Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (7): 65-70.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0501
Previous Articles Next Articles
CHEN Li-jie1(), YANG Fan1, FAN Hai-yan1, ZHAO Di2, WANG Yuan-yuan3, ZHU Xiao-feng1, LIU Xiao-yu4, DUAN Yu-xi1
Received:
2021-04-15
Online:
2021-07-26
Published:
2021-08-13
CHEN Li-jie, YANG Fan, FAN Hai-yan, ZHAO Di, WANG Yuan-yuan, ZHU Xiao-feng, LIU Xiao-yu, DUAN Yu-xi. Advances of Non-coding RNA in Interactions Among Biocontrol Bacteria and Plant Nematodes and Host[J]. Biotechnology Bulletin, 2021, 37(7): 65-70.
[1] |
Siddiqui IA,Haas D,Heeb S.Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita[J].Appl Environ Microbiol,2005,71(9):5646-5649.
doi: 10.1128/AEM.71.9.5646-5649.2005 URL |
[2] | 尤杨,赵丹,朱晓峰,等.活性氧与木质素对细菌Sneb825诱导番茄抵抗南方根结线虫侵染的响应[J].植物病理学报,2018,48(4):547-555. |
You Y,Zhao D,Zhu XF,et al.Response of tomato-infecting Meloidogyne incognita to reactive oxygen species and lignin induced by Pseudomonas fluorescens Sneb825[J].Acta Phytopathol Sin,2018,48(4):547-555. | |
[3] |
Zhao D,Zhao H,Zhao D,et al.Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease[J].Biol Control,2018,119:12-19.
doi: 10.1016/j.biocontrol.2018.01.004 URL |
[4] |
Yang F,Zhao D,Fan HY,et al.Functional analysis of long non-coding RNAs reveal their novel roles in biocontrol of bacteria-induced tomato resistance to Meloidogyne incognita[J].Int J Mol Sci,2020,21(3):911.
doi: 10.3390/ijms21030911 URL |
[5] |
Bartel DP.MicroRNAs[J].Cell,2004,116(2):281-297.
pmid: 14744438 |
[6] |
Jaubert-Possamai S,Noureddine Y,Favery B.MicroRNAs, new players in the plant-nematode interaction[J].Front Plant Sci,2019,10:1180.
doi: 10.3389/fpls.2019.01180 pmid: 31681347 |
[7] |
Hewezi T,Baum TJ.Complex feedback regulations govern the expression of miRNA396 and its GRF target genes[J].Plant Signal Behav,2012,7(7):749-751.
doi: 10.4161/psb.20420 pmid: 22751317 |
[8] |
Noon JB,Hewezi T,Baum TJ.Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections[J].J Exp Bot,2019,70(5):1653-1668.
doi: 10.1093/jxb/erz022 URL |
[9] |
Cabrera J,Barcala M,García A,et al.Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica:a functional role for miR390 and its TAS3-derived tasiRNAs[J].New Phytol,2016,209(4):1625-1640.
doi: 10.1111/nph.13735 pmid: 26542733 |
[10] |
Zhao WC,Li ZL,Fan JW,et al.Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato[J].J Exp Bot,2015,66(15):4653-4667.
doi: 10.1093/jxb/erv238 URL |
[11] |
Díaz-Manzano FE,Cabrera J,Ripoll JJ,et al.A role for the gene regulatory module microRNA172/TARGET OF EARLY ACTIVATION TAGGED 1/FLOWERING LOCUS T(miRNA172/TOE1/FT)in the feeding sites induced by Meloidogyne javanica in Arabidopsis thaliana[J].New Phytol,2018,217(2):813-827.
doi: 10.1111/nph.14839 pmid: 29105090 |
[12] |
Zhang W,Gao S,Zhou X,et al.Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks[J].Plant Mol Biol,2011,75(1/2):93-105.
doi: 10.1007/s11103-010-9710-8 URL |
[13] |
Medina C,da Rocha M,Magliano M,et al.Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita[J].New Phytol,2017,216(3):882-896.
doi: 10.1111/nph.2017.216.issue-3 URL |
[14] |
Pan X,Nichols RL,Li C,et al.MicroRNA-target gene responses to root knot nematode(Meloidogyne incognita)infection in cotton(Gossypium hirsutum L. )[J].Genomics,2019,111(3):383-390.
doi: 10.1016/j.ygeno.2018.02.013 URL |
[15] |
Navarro L,Dunoyer P,Jay F,et al.A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J].Science,2006,312(5772):436-439.
pmid: 16627744 |
[16] |
Lee B,Park YS,Lee S,et al.Bacterial RNAs activate innate immunity in Arabidopsis[J].New Phytol,2016,209(2):785-797.
doi: 10.1111/nph.2016.209.issue-2 URL |
[17] |
Li Y,Zhang QQ,Zhang JG,et al.Identification of MicroRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity[J].Plant Physiol,2010,152(4):2222-2231.
doi: 10.1104/pp.109.151803 URL |
[18] |
Święcicka M,Skowron W,Cieszyński P,et al.The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs[J].Plant Physiol Biochem,2017,113:51-55.
doi: 10.1016/j.plaphy.2017.01.026 URL |
[19] |
Jones JDG,Dangl JL.The plant immune system[J].Nature,2006,444:323-329.
doi: 10.1038/nature05286 URL |
[20] | Wei HW,Liu J,Guo QW,et al.Genomic organization and comparative phylogenic analysis of NBS-LRR resistance gene family in Solanum pimpinellifolium and Arabidopsis thaliana[J].Evol Bioinform,2020,16:1-13. |
[21] | 刘云飞,万红建,李志邈,等.植物NBS-LRR抗病基因的结构、功能、进化起源及其应用[J].分子植物育种,2014,14(2):377-389. |
Liu YF,Wan HJ,Li ZM,et al.Analysis of plant NBS-LRR resistance gene:structure, function, origin, evolution and their application[J].Mol Plant Bree,2014,14(2):377-389. | |
[22] | 陆秀红,张雨,秦舒婷,等.番茄NBS-LRR抗根结线虫基因同源序列的克隆与分析[J].华中农业大学学报,2019,38(1):67-72. |
Lu XH,Zhang Y,Qin ST,et al.Cloning and analysis of root knot nematode resistance gene of NBS-LRR analogs from tomato[J].J Huazhong Agric Univ,2019,38(1):67-72. | |
[23] |
Jiang N,Cui J,Shi Y,et al.Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato-Phytophthora infestans interaction[J].Hortic Res,2019,6:28.
doi: 10.1038/s41438-018-0096-0 URL |
[24] |
Jiang CH,Fan ZH,Li ZJ,et al.Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis[J].Mol Plant Pathol,2020,21(6):854-870.
doi: 10.1111/mpp.12935 URL |
[25] |
Niu DD,Xia J,Jiang CH,et al.Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis[J].J Integr Plant Biol,2016,58(4):426-439.
doi: 10.1111/jipb.v58.4 URL |
[26] |
Zhang Y,Xia R,Kuang HH,et al.The diversification of plant NBS-LRR Defense genes directs the evolution of MicroRNAs that target them[J].Mol Biol Evol,2016,33(10):2692-2705.
doi: 10.1093/molbev/msw154 pmid: 27512116 |
[27] |
Zhang L,Wang M,Li N,et al.Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton[J].Plant Biotechnol J,2018,16(6):1172-1185.
doi: 10.1111/pbi.12861 pmid: 29149461 |
[28] |
Qin T,Zhao HY,Cui P,et al.A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance[J].Plant Physiol,2017,175(3):1321-1336.
doi: 10.1104/pp.17.00574 URL |
[29] | 毋若楠,王红,杨成成,等.拟南芥lncRNA-At5NC056820过表达载体构建及其转基因植株的抗旱性研究[J].西北植物学报,2017,37(10):1904-1909. |
Wu RN,Wang H,Yang CC,et al.Construction of lncRNA-At5NC056820 overexpression vector in Arabidopsis thaliana and study on drought resistance of transgenic plants[J].Acta Bot Boreali Occidentalia Sin,2017,37(10):1904-1909. | |
[30] |
Cui J,Jiang N,Meng J,et al.LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato-Phytophthora infestans interactions[J].Plant J,2019,97(5):933-946.
doi: 10.1111/tpj.2019.97.issue-5 URL |
[31] |
Sanger HL,Klotz G,Riesner D,et al.Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J].PNAS,1976,73(11):3852-3856.
pmid: 1069269 |
[33] |
Memczak S,Jens M,Elefsinioti A,et al.Circular RNAs are a large class of animal RNAs with regulatory potency[J].Nature,2013,495(7441):333-338.
doi: 10.3389/fmolb,2020.00091 URL |
Zhang PJ,Li SD,Chen M.Characterization and function of circular RNAs in plants[J].Front Mol Biosci,2020,7:91. DOI:10.3389/fmolb,2020.00091. | |
[34] | 龙春昊,赵星宇,武永军.植物环状RNA[J].生命的化学,2020,40(5):654-662. |
Long CH,Zhao XY,Wu YJ.circRNA in plants[J].Chem Life,2020,40(5):654-662. | |
[35] |
Hansen TB,Jensen TI,Clausen BH,et al.Natural RNA circles function as efficient microRNA sponges[J].Nature,2013,495(7441):384-388.
doi: 10.1038/nature11993 URL |
[36] |
Salzman J.Circular RNA expression:its potential regulation and function[J].Trends Genet,2016,32(5):309-316.
doi: S0168-9525(16)00032-9 pmid: 27050930 |
[37] |
Conn VM,Hugouvieux V,Nayak A,et al.A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J].Nat Plants,2017,3:17053.
doi: 10.1038/nplants.2017.53 URL |
[38] |
Chen LL,Yang L.Regulation of circRNA biogenesis[J].RNA Biol,2015,12(4):381-388.
doi: 10.1080/15476286.2015.1020271 URL |
[39] |
Lee SM,Kong HG,Ryu CM.Are circular RNAs new kids on the block?[J].Trends Plant Sci,2017,22(5):357-360.
doi: 10.1016/j.tplants.2017.03.007 URL |
[40] |
Guria A,Sharma P,Natesan S,et al.Circular RNAs—the road less traveled[J].Front Mol Biosci,2020,6:146.
doi: 10.3389/fmolb.2019.00146 URL |
[41] |
Fan J,Quan W,Li GB,et al.CircRNAs are involved in the Rice-Magnaporthe oryzae interaction[J].Plant Physiol,2020,182(1):272-286.
doi: 10.1104/pp.19.00716 URL |
[42] | 陈静,鲁秀梅,任琴琴,等.甜瓜circRNA及其蔓枯病抗性靶基因鉴定[J].南京农业大学学报,2020,43(4):629-636. |
Chen J,Lu XM,Ren QQ,et al.Identification of circRNA and their target genes related to resistance to gummy stem blight in melon[J].J Nanjing Agric Univ,2020,43(4):629-636. | |
[43] |
Zhou R,Zhu YX,Zhao J,et al.Transcriptome-wide identification and characterization of potato circular RNAs in response to Pectobacterium carotovorum subspecies brasiliense infection[J].Int J Mol Sci,2017,19(1):71.
doi: 10.3390/ijms19010071 URL |
[44] |
Sun YY,Zhang HQ,Fan M,et al.Genome-wide identification of long non-coding RNAs and circular RNAs reveal their CeRNA networks in response to cucumber green mottle mosaic virus infection in watermelon[J].Arch Virol,2020,165(5):1177-1190.
doi: 10.1007/s00705-020-04589-4 URL |
[45] |
Hewezi T,Howe P,Maier TR,et al.Arabidopsis small RNAs and their targets during cyst nematode parasitism[J].Mol Plant Microbe Interactions,2008,21(12):1622-1634.
doi: 10.1094/MPMI-21-12-1622 URL |
[46] |
Ruiz-Ferrer V,Cabrera J,Martinez-Argudo I,et al.Silenced retrotransposons are major rasiRNAs targets in Arabidopsis galls induced by Meloidogyne javanica[J].Mol Plant Pathol,2018,19(11):2431-2445.
doi: 10.1111/mpp.12720 pmid: 30011119 |
[47] |
Huang G,Allen R,Davis EL,et al.Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene[J].PNAS,2006,103(39):14302-14306.
doi: 10.1073/pnas.0604698103 URL |
[48] |
Steeves RM,Todd TC,Essig JS,et al.Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction[J].Funct Plant Biol,2006,33(11):991.
doi: 10.1071/FP06130 pmid: 32689310 |
[49] |
Middleton H,Yergeau É,Monard C,et al.Rhizospheric plant-microbe interactions:miRNAs as a key mediator[J].Trends Plant Sci,2021,26(2):132-141.
doi: 10.1016/j.tplants.2020.09.005 pmid: 33036916 |
[50] |
Zhao JH,Zhang T,Liu QY,et al.Trans-kingdom RNAs and their fates in recipient cells:advances, utilization, and perspectives[J].Plant Commun,2021,2(2):100167.
doi: 10.1016/j.xplc.2021.100167 URL |
[51] |
Panstruga R.Bacterial RNA-a new MAMP on the block?[J].New Phytol,2016,209(2):458-460.
doi: 10.1111/nph.13726 pmid: 26763679 |
[52] |
贺婵,汪顺娥,郝海婷,等.小 RNA 介导蜡质芽孢杆菌AR156 激活MAPK 通路诱导拟南芥系统抗病性研究[J].植物病理学报,2021. DOI:10.13926/j.cnki.apps.000547.
doi: 10.13926/j.cnki.apps.000547 |
He C,Wang SE,Hao HT,et al.Small RNA mediated Bacillus cereus AR156 induces systemic resistance in Arabidopsis through activation of MAPK pathway[J].Acta Phytopathologica Sinica,2021. DOI:10.13926/j.cnki.apps.000547.
doi: 10.13926/j.cnki.apps.000547 |
[1] | CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect [J]. Biotechnology Bulletin, 2023, 39(8): 262-271. |
[2] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[3] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[4] | ZHANG Le-le, WANG Guan, LIU Feng, HU Han-qiao, REN Lei. Isolation, Identification and Biocontrol Mechanism of an Antagonistic Bacterium Against Anthracnose on Mango Caused by Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2023, 39(4): 277-287. |
[5] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[6] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[7] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[8] | YANG Dong-ya, QI Rui-xue LI, Zhao-xuan , LIN Wei, MA Hui, ZHANG Xue-yan. Screening, Identification and Growth-promoting Effect of Antagonistic Bacillus spp. Against Cucumber Fusarium solani [J]. Biotechnology Bulletin, 2023, 39(2): 211-220. |
[9] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
[10] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[11] | MA Sai-mai, LI Tong-yuan, MA Yan-jun, HAN Fu-jun, PENG Hai, KONG Wei-bao. Research Progress in Chitinase Involving in the Biocontrol of Crop Diseases and Pests [J]. Biotechnology Bulletin, 2023, 39(10): 29-40. |
[12] | WANG Nan-nan, WANG Wen-jia, ZHU Qiang. Research Progress of microRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2022, 38(8): 1-11. |
[13] | ZU Xue, ZHOU Hu, ZHU Hua-jun, REN Zuo-hua, LIU Er-ming. Isolation and Identification of Bacillus subtilis K-268 and Its Biological Control Effect on Rice Blast [J]. Biotechnology Bulletin, 2022, 38(6): 136-146. |
[14] | SUN Bao-zhen, QUAN Long-ping, KANG Hui, YAO Yu-xin, SHEN Tian, CHEN Wei-ping, DU Yuan-peng, GAO Zhen. Back-splicing Primers-based PCR Method for Specific Detection of circRNA [J]. Biotechnology Bulletin, 2022, 38(5): 279-285. |
[15] | LIU Chao, CHU Hong-long, WU Li-fang, TANG Li-zhou, HAN Li-hong. Regulation Mechanism of Phosphate Homeostasis in Plants [J]. Biotechnology Bulletin, 2022, 38(2): 184-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||