Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (8): 35-45.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0735
Previous Articles Next Articles
LIANG Zhen-ting1(), TANG Ting1,2()
Received:
2021-06-08
Online:
2021-08-26
Published:
2021-09-10
Contact:
TANG Ting
E-mail:641619839@qq.com;tangting@hnust.edu.cn
LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants[J]. Biotechnology Bulletin, 2021, 37(8): 35-45.
内生菌 Endophyte | 宿主植物 Host plant | 功 能 Function | 参考文献 References |
---|---|---|---|
草青霉(Penicillium oxalicum) 假诺卡氏菌属(Pseudonocardia sp.YIM 63111) 印度梨形孢(Piriformospora indica) 嗜铬固氮菌(Azotobacter chroococcum) | 青 蒿(Artemisia carvifolia) | 促进倍半萜青蒿素生物合成 生物转化青蒿酸 | [ |
菌根真菌MF23(Mycena sp.) | 石 斛(Dendrobium nobile Lindl.) | 调控倍半萜蔓枝碱生物合成 | [ |
荧光假单孢菌(Pseudomonas fluorescens) | 苍 术(Atractylodes lancea) | 诱导吲哚乙酸合成促进倍半萜积累 | [ |
木聚糖菌GDG-102(Xylaria sp. GDG-102) | 山根豆(Sophora tonkinensis) | 促进倍半萜艾里莫芬烷生物合成 | [ |
内生镰刀菌(Fusarium mairei) 子囊菌属(Ascomycetes) 德特罗霉菌属(Deutromycetes) 拟盾壳霉属(Paraconiothyrium sp) | 红豆杉(Taxus chinensis) | 诱导紫杉醇生物合成关键基因表达,促进二萜紫杉醇生物合成 | [ |
线浅孔(Grammothele lineata) | 长蒴黄麻(Corchorus olitorius) | 促进二萜紫杉醇生物合成 | [ |
脆弱毛霉(Mucor rouxii AS3.3447) | 丹 参(Salvia miltiorrhiza) | 促进二萜丹参酮生物合成 | [ |
广生亚大茎点菌 (Macrophomina pseudophaseolina) | 毛喉鞘蕊花(Coleus forskohlii) | 诱导二萜关键酶基因表达,增加毛 喉素产量 | [ |
脆弱毛霉(Mucor rouxii AS3.3447) | 丹 参(Salvia miltiorrhiza) | 生物转化丹参酮等二萜类化合物 | [ |
草茎点霉D603(Phoma herbarum D603) | 丹 参(Salvia miltiorrhiza) | 诱导生长激素和丹参酮生物合成 | [ |
黄曲霉属(Aspergillus sp.) | 三 七(Panax notoginseng) | 促进三萜人参皂苷生物合成 | [ |
镰刀霉(Fusarium sp.) | 人 参(Panax ginseng) | 促进三萜人参皂苷生物合成 | [ |
深黄伞形霉(Umbelopsis isabellina) | 蛇足石杉(Huperzia serrata) | 促进三萜熊果酸生物转化 | [ |
青霉菌(Penicillium sp. SWUKD4.1850) | 狭叶南五味子(Kadsura angustifolia) | 促进五味子三萜类生物合成 | [ |
迈锡尼属真菌(Mycena sp.) | 金线莲(Anoectochilus formosanus) | 促进相关药效成分生物合成 | [ |
白腐真菌(Hypocrea lixii) | 木豆根(Cajanus cajan Millsp) | 促进黄酮类木豆醇生物合成 | [ |
黑麦草内生菌(Methylobacterium extorquens) | 黑麦草(Lolium perenne) | 促进黄酮类香豆素,白藜芦醇,芦 丁生物合成 | [ |
芽孢杆菌(Bacillus genus) | 夏雪片莲(Leucojum aestivum) | 促进石蒜科生物碱生物合成 | [ |
枯草芽孢杆菌(Bacillus subtilis PXJ-5,CPC3) 蜡状芽孢杆菌菌株(Bacillus cereus strai ChST) 赖氨酸芽孢杆菌(Lysinibacillus sp.) | 登塔木(Miquelia dentata) | 促进喜树碱生物合成 | [ |
大理石雕菌属(Marmoricola) 不动杆菌属(Acinetobacter) | 罂粟(Papaver somniferum) | 诱导生物碱合成基因表达,促进吗啡生物合成 | [ |
Table1 Effects of endophytes on the biosynthesis of secondary metabolites in plants
内生菌 Endophyte | 宿主植物 Host plant | 功 能 Function | 参考文献 References |
---|---|---|---|
草青霉(Penicillium oxalicum) 假诺卡氏菌属(Pseudonocardia sp.YIM 63111) 印度梨形孢(Piriformospora indica) 嗜铬固氮菌(Azotobacter chroococcum) | 青 蒿(Artemisia carvifolia) | 促进倍半萜青蒿素生物合成 生物转化青蒿酸 | [ |
菌根真菌MF23(Mycena sp.) | 石 斛(Dendrobium nobile Lindl.) | 调控倍半萜蔓枝碱生物合成 | [ |
荧光假单孢菌(Pseudomonas fluorescens) | 苍 术(Atractylodes lancea) | 诱导吲哚乙酸合成促进倍半萜积累 | [ |
木聚糖菌GDG-102(Xylaria sp. GDG-102) | 山根豆(Sophora tonkinensis) | 促进倍半萜艾里莫芬烷生物合成 | [ |
内生镰刀菌(Fusarium mairei) 子囊菌属(Ascomycetes) 德特罗霉菌属(Deutromycetes) 拟盾壳霉属(Paraconiothyrium sp) | 红豆杉(Taxus chinensis) | 诱导紫杉醇生物合成关键基因表达,促进二萜紫杉醇生物合成 | [ |
线浅孔(Grammothele lineata) | 长蒴黄麻(Corchorus olitorius) | 促进二萜紫杉醇生物合成 | [ |
脆弱毛霉(Mucor rouxii AS3.3447) | 丹 参(Salvia miltiorrhiza) | 促进二萜丹参酮生物合成 | [ |
广生亚大茎点菌 (Macrophomina pseudophaseolina) | 毛喉鞘蕊花(Coleus forskohlii) | 诱导二萜关键酶基因表达,增加毛 喉素产量 | [ |
脆弱毛霉(Mucor rouxii AS3.3447) | 丹 参(Salvia miltiorrhiza) | 生物转化丹参酮等二萜类化合物 | [ |
草茎点霉D603(Phoma herbarum D603) | 丹 参(Salvia miltiorrhiza) | 诱导生长激素和丹参酮生物合成 | [ |
黄曲霉属(Aspergillus sp.) | 三 七(Panax notoginseng) | 促进三萜人参皂苷生物合成 | [ |
镰刀霉(Fusarium sp.) | 人 参(Panax ginseng) | 促进三萜人参皂苷生物合成 | [ |
深黄伞形霉(Umbelopsis isabellina) | 蛇足石杉(Huperzia serrata) | 促进三萜熊果酸生物转化 | [ |
青霉菌(Penicillium sp. SWUKD4.1850) | 狭叶南五味子(Kadsura angustifolia) | 促进五味子三萜类生物合成 | [ |
迈锡尼属真菌(Mycena sp.) | 金线莲(Anoectochilus formosanus) | 促进相关药效成分生物合成 | [ |
白腐真菌(Hypocrea lixii) | 木豆根(Cajanus cajan Millsp) | 促进黄酮类木豆醇生物合成 | [ |
黑麦草内生菌(Methylobacterium extorquens) | 黑麦草(Lolium perenne) | 促进黄酮类香豆素,白藜芦醇,芦 丁生物合成 | [ |
芽孢杆菌(Bacillus genus) | 夏雪片莲(Leucojum aestivum) | 促进石蒜科生物碱生物合成 | [ |
枯草芽孢杆菌(Bacillus subtilis PXJ-5,CPC3) 蜡状芽孢杆菌菌株(Bacillus cereus strai ChST) 赖氨酸芽孢杆菌(Lysinibacillus sp.) | 登塔木(Miquelia dentata) | 促进喜树碱生物合成 | [ |
大理石雕菌属(Marmoricola) 不动杆菌属(Acinetobacter) | 罂粟(Papaver somniferum) | 诱导生物碱合成基因表达,促进吗啡生物合成 | [ |
内生菌 Endophyte | 宿主植物 Host Plant | 作用Function | 参考文献References |
---|---|---|---|
枯草芽孢杆菌(Bacillus subtilis) | 多种植物 | 抵御病原菌 | [ |
印度梨形孢(Serendipita indica) 不动杆菌属(Acinetobacter) 节杆菌属(Arthrobacter) 芽孢杆菌属(Bacillus) 微杆菌属(Microbacterium) 泛菌属(Pantoea) 假单胞菌属(Pseudomonas) 狭营养单胞菌属(Stenotrophomonas) | 番 茄(Solanum lycopersici) | 抵御病原菌 | [ |
粉红粘帚霉(Clonostachys rosea) | 艾纳香(Blumea balsamifera) | 抵御病原菌 | [ |
非洲木霉(Trichoderma afroharzianum) | 橡皮树(Ficus elastica) | 抵御病原菌 | [ |
印度梨形孢(Piriformospora indica) | 青 蒿(Artemisia carvifolia) | 抵御砷胁迫 | [ |
巨大芽孢杆菌(Bacillus megaterium H3) | 水 稻(Oryza sativa) | 抵御砷胁迫 | [ |
青生红球菌(Rhodococcus qingshengii) | 多种植物 | 抵御多种重金属胁迫 | [ |
芽孢杆菌(Bacillus BM18-2) | 狼尾草(Pennisetum purpureum) | 抵御镉胁迫 | [ |
黄曲霉(Aspergillus flavus CHS1) | 藜(Chenopodium album) | 抵御盐胁迫 | [ |
茶叶籽酵母(Meyerozyma caribbica) | 玉米(Zea mays) | 抵御盐胁迫 | [ |
枯草芽孢杆菌(Bacillus subtilis NUU4) 根瘤菌(Rhizobium ciceriic53) | 鹰嘴豆(Cicer ariietinum) | 抵御盐胁迫 | [ |
短小芽孢杆菌(Bacillus subtilis) | 甘草(Glycyrrhiza uralensis Fisch) | 抵御干旱胁迫 | [ |
印度梨形孢(Piriformospora indica) | 拟南芥(Arabidopsis thaliana) | 抵御低温胁迫 | [ |
蜡样芽孢杆菌(Bacillus cereus SA1) 根瘤菌(Rhizobium) | 大 豆(Glycine max) | 抵御高温及多种非生物胁迫 | [ |
Table 2 Effects of endophytes on the stress tolerance of plants
内生菌 Endophyte | 宿主植物 Host Plant | 作用Function | 参考文献References |
---|---|---|---|
枯草芽孢杆菌(Bacillus subtilis) | 多种植物 | 抵御病原菌 | [ |
印度梨形孢(Serendipita indica) 不动杆菌属(Acinetobacter) 节杆菌属(Arthrobacter) 芽孢杆菌属(Bacillus) 微杆菌属(Microbacterium) 泛菌属(Pantoea) 假单胞菌属(Pseudomonas) 狭营养单胞菌属(Stenotrophomonas) | 番 茄(Solanum lycopersici) | 抵御病原菌 | [ |
粉红粘帚霉(Clonostachys rosea) | 艾纳香(Blumea balsamifera) | 抵御病原菌 | [ |
非洲木霉(Trichoderma afroharzianum) | 橡皮树(Ficus elastica) | 抵御病原菌 | [ |
印度梨形孢(Piriformospora indica) | 青 蒿(Artemisia carvifolia) | 抵御砷胁迫 | [ |
巨大芽孢杆菌(Bacillus megaterium H3) | 水 稻(Oryza sativa) | 抵御砷胁迫 | [ |
青生红球菌(Rhodococcus qingshengii) | 多种植物 | 抵御多种重金属胁迫 | [ |
芽孢杆菌(Bacillus BM18-2) | 狼尾草(Pennisetum purpureum) | 抵御镉胁迫 | [ |
黄曲霉(Aspergillus flavus CHS1) | 藜(Chenopodium album) | 抵御盐胁迫 | [ |
茶叶籽酵母(Meyerozyma caribbica) | 玉米(Zea mays) | 抵御盐胁迫 | [ |
枯草芽孢杆菌(Bacillus subtilis NUU4) 根瘤菌(Rhizobium ciceriic53) | 鹰嘴豆(Cicer ariietinum) | 抵御盐胁迫 | [ |
短小芽孢杆菌(Bacillus subtilis) | 甘草(Glycyrrhiza uralensis Fisch) | 抵御干旱胁迫 | [ |
印度梨形孢(Piriformospora indica) | 拟南芥(Arabidopsis thaliana) | 抵御低温胁迫 | [ |
蜡样芽孢杆菌(Bacillus cereus SA1) 根瘤菌(Rhizobium) | 大 豆(Glycine max) | 抵御高温及多种非生物胁迫 | [ |
[1] |
Jin Z, Gao L, Zhang L, et al. Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng[J]. Nat Prod Res, 2017, 31(22):2700-2703.
doi: 10.1080/14786419.2017.1292265 URL |
[2] |
Wei G, Dong L, Yang J, et al. Integrated metabolomic and transcriptomic analyses revealed the distribution of saponins in Panax notoginseng[J]. Acta Pharm Sin B, 2018, 8(3):458-465.
doi: 10.1016/j.apsb.2017.12.010 URL |
[3] |
Xie J, Wu YY, Zhang TY, et al. New antimicrobial compounds produced by endophytic Penicillium janthinellum isolated from Panax notoginseng as potential inhibitors of FtsZ[J]. Fitoterapia, 2018, 131:35-43.
doi: 10.1016/j.fitote.2018.10.006 URL |
[4] |
Xie J, Wu YY, Zhang TY, et al. New and bioactive natural products from an endophyte of Panax notoginseng[J]. RSC Adv, 2017, 7(60):38100-38109.
doi: 10.1039/C7RA07060H URL |
[5] |
Bartikova H, Hanusova V, Skalova L, et al. Antioxidant, pro-oxidant and other biological activities of sesquiterpenes[J]. Curr Top Med Chem, 2014, 14(22):2478-2494.
pmid: 25478887 |
[6] |
Zhang C, Ma X, Zhu R, et al. Analysis of the endophytic bacteria community structure and function of Panax notoginseng based on high-throughput sequencing[J]. Curr Microbiol, 2020, 77(10):2745-2750.
doi: 10.1007/s00284-020-02068-2 pmid: 32506240 |
[7] | Rout ME. The plant microbiome[M]// Genomes of Herbaceous Land Plants. Amsterdam:Elsevier, 2014:279-309. |
[8] |
Santamaria O, Lledó S, Rodrigo S, et al. Effect of fungal endophytes on biomass yield, nutritive value and accumulation of minerals in Ornithopus compressus[J]. Microb Ecol, 2017, 74(4):841-852.
doi: 10.1007/s00248-017-1001-3 pmid: 28550339 |
[9] |
Pandey SS, Singh S, Babu CS, et al. Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids[J]. Planta, 2016, 243(5):1097-1114.
doi: 10.1007/s00425-016-2467-9 pmid: 26794966 |
[10] |
Maggini V, De Leo M, Mengoni A, et al. Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea(L.)Moench:an in vitro model[J]. Sci Rep, 2017, 7(1):16924.
doi: 10.1038/s41598-017-17110-w URL |
[11] |
Deng X, Song XS, Halifu S, et al. Effects of dark septate endophytes strain A024 on damping-off biocontrol, plant growth and the rhizosphere soil enviroment of Pinus sylvestris var. mongolica annual seedlings[J]. Plants, 2020, 9(7):913.
doi: 10.3390/plants9070913 URL |
[12] |
Yamaji K, Watanabe Y, Masuya H, et al. Root fungal endophytes enhance heavy-metal stress tolerance of Clethra barbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy-metal concentration[J]. PLoS One, 2016, 11(12):e0169089.
doi: 10.1371/journal.pone.0169089 URL |
[13] |
Song MC, Kim EJ, Kim E, et al. Microbial biosynjournal of medicinally important plant secondary metabolites[J]. Nat Prod Rep, 2014, 31(11):1497-1509.
doi: 10.1039/C4NP00057A URL |
[14] |
Liu Y, Jing SX, Luo SH, et al. Non-volatile natural products in plant glandular trichomes:chemistry, biological activities and biosynjournal[J]. Nat Prod Rep, 2019, 36(4):626-665.
doi: 10.1039/C8NP00077H URL |
[15] |
Tian H, Li XP, Zhao JP, et al. Biotransformation of artemisinic acid to bioactive derivatives by endophytic Penicillium oxalicum B4 from Artemisia annua L[J]. Phytochemistry, 2021, 185:112682.
doi: 10.1016/j.phytochem.2021.112682 pmid: 33582588 |
[16] |
Li J, Zhao GZ, Varma A, et al. An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua[J]. PLoS One, 2012, 7(12):e51410.
doi: 10.1371/journal.pone.0051410 URL |
[17] |
Li Q, Ding G, Li B, et al. Transcriptome analysis of genes involved in dendrobine biosynjournal in Dendrobium nobile lindl. infected with mycorrhizal fungus MF23(Mycena sp. )[J]. Sci Rep, 2017, 7(1):316.
doi: 10.1038/s41598-017-00445-9 URL |
[18] |
Zhou JY, Sun K, Chen F, et al. Endophytic Pseudomonas induces metabolic flux changes that enhance medicinal sesquiterpenoid accumulation in Atractylodes lancea[J]. Plant Physiol Biochem, 2018, 130:473-481.
doi: 10.1016/j.plaphy.2018.07.016 URL |
[19] |
Liang Y, Xu W, Liu C, et al. Eremophilane sesquiterpenes from the endophytic fungus Xylaria sp. GDG-102[J]. Nat Prod Res, 2019, 33(9):1304-1309.
doi: 10.1080/14786419.2018.1472597 pmid: 29764195 |
[20] | 权晨曦, 丁建海. 植物内生真菌二萜活性成分的研究进展[J]. 天然产物研究与开发, 2021, 33(5):878-891. |
Quan CX, Ding JH. Research progress on diterpenes from endophytic fungi[J]. Nat Prod Res Dev, 2021, 33(5):878-891. | |
[21] |
Li YC, Tao WY, Cheng L. Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor[J]. Appl Microbiol Biotechnol, 2009, 83(2):233-239.
doi: 10.1007/s00253-009-1856-4 URL |
[22] |
Dudeja SS, Suneja-Madan P, Paul M, et al. Bacterial endophytes:Molecular interactions with their hosts[J]. J Basic Microbiol, 2021, 61(6):475-505.
doi: 10.1002/jobm.v61.6 URL |
[23] |
Schardl CL, Leuchtmann A, Spiering MJ. Symbioses of grasses with seedborne fungal endophytes[J]. Annu Rev Plant Biol, 2004, 55(1):315-340.
doi: 10.1146/annurev.arplant.55.031903.141735 URL |
[24] |
Kusari S, Singh S, Jayabaskaran C. Rethinking production of Taxol®(paclitaxel)using endophyte biotechnology[J]. Trends Biotechnol, 2014, 32(6):304-311.
doi: 10.1016/j.tibtech.2014.03.011 URL |
[25] |
Soliman SS, Raizada MN. Interactions between co-habitating fungi elicit synjournal of taxol from an endophytic fungus in host Taxus plants[J]. Front Microbiol, 2013, 4:3.
doi: 10.3389/fmicb.2013.00003 pmid: 23346084 |
[26] |
Das A, Rahman MI, Ferdous AS, et al. An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity[J]. PLoS One, 2017, 12(6):e0178612.
doi: 10.1371/journal.pone.0178612 URL |
[27] |
Xu W, Jin X, Yang M, et al. Primary and secondary metabolites produced in Salvia miltiorrhiza hairy roots by an endophytic fungal elicitor from Mucor fragilis[J]. Plant Physiol Biochem, 2021, 160:404-412.
doi: 10.1016/j.plaphy.2021.01.023 URL |
[28] |
Mastan A, Bharadwaj R, Kushwaha RK, et al. Functional fungal endophytes in Coleus forskohlii regulate labdane diterpene biosynjournal for elevated forskolin accumulation in roots[J]. Microb Ecol, 2019, 78(4):914-926.
doi: 10.1007/s00248-019-01376-w URL |
[29] |
He W, Li Y, Qin Y, et al. New cryptotanshinone derivatives with anti-influenza A virus activities obtained via biotransformation by Mucor rouxii[J]. Appl Microbiol Biotechnol, 2017, 101(16):6365-6374.
doi: 10.1007/s00253-017-8351-0 URL |
[30] | Chen HM, Wu HX, He XY, et al. Promoting tanshinone synjournal of Salvia miltiorrhiza root by a seed endophytic fungus, Phoma herbarum D603[J]. Zhong Guo Zhong Yao Za Zhi, 2020, 45(1):65-71. |
[31] |
Biswas T, Dwivedi UN. Plant triterpenoid saponins:biosynjournal, in vitro production, and pharmacological relevance[J]. Protoplasma, 2019, 256(6):1463-1486.
doi: 10.1007/s00709-019-01411-0 pmid: 31297656 |
[32] |
Yan H, Jin H, Fu Y, et al. Production of rare ginsenosides Rg3 and Rh2 by endophytic bacteria from Panax ginseng[J]. J Agric Food Chem, 2019, 67(31):8493-8499.
doi: 10.1021/acs.jafc.9b03159 URL |
[33] |
Wu H, Yang HY, You XL, et al. Diversity of endophytic fungi from roots of Panax ginseng and their saponin yield capacities[J]. Springerplus, 2013, 2(1):107.
doi: 10.1186/2193-1801-2-107 URL |
[34] |
Fu SB, Yang JS, Cui JL, et al. Biotransformation of ursolic acid by an endophytic fungus from medicinal plant Huperzia serrata[J]. Chem Pharm Bull:Tokyo, 2011, 59(9):1180-1182.
doi: 10.1248/cpb.59.1180 URL |
[35] |
Qin D, Shen W, Wang J, et al. Enhanced production of unusual triterpenoids from Kadsura angustifolia fermented by a symbiont endophytic fungus, Penicillium sp. SWUKD4. 1850[J]. Phytochemistry, 2019, 158:56-66.
doi: 10.1016/j.phytochem.2018.11.005 URL |
[36] |
Nemzer B, Al-Taher F, Abshiru N. Extraction and natural bioactive molecules characterization in spinach, kale and purslane:a comparative study[J]. Molecules, 2021, 26(9):2515.
doi: 10.3390/molecules26092515 URL |
[37] |
Zhao DF, Fan YF, Yu HN, et al. Discovery and characterization of flavonoids in vine tea as catechol-O-methyltransferase inhibitors[J]. Fitoterapia, 2021, 152:104913.
doi: 10.1016/j.fitote.2021.104913 URL |
[38] |
Al-Dashti YA, Holt RR, Keen CL, et al. Date palm fruit(Phoenix dactylifera):effects on vascular health and future research directions[J]. Int J Mol Sci, 2021, 22(9):4665.
doi: 10.3390/ijms22094665 URL |
[39] |
Nawrot J, Budzianowski J, Nowak G, et al. Biologically active compounds in Stizolophus balsamita inflorescences:isolation, phytochemical characterization and effects on the skin biophysical parameters[J]. Int J Mol Sci, 2021, 22(9):4428.
doi: 10.3390/ijms22094428 URL |
[40] |
Xiao JL, Sun JG, Pang B, et al. Isolation and screening of stress-resistant endophytic fungus strains from wild and cultivated soybeans in cold region of China[J]. Appl Microbiol Biotechnol, 2021, 105(2):755-768.
doi: 10.1007/s00253-020-11048-2 URL |
[41] |
Zhao J, Li C, Wang W, et al. Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea(Cajanus cajan[L. ]Millsp. )[J]. J Appl Microbiol, 2013, 115(1):102-113.
doi: 10.1111/jam.12195 pmid: 23495919 |
[42] |
Lu L, Chai Q, He S, et al. Effects and mechanisms of phytoalexins on the removal of polycyclic aromatic hydrocarbons(PAHs)by an endophytic bacterium isolated from ryegrass[J]. Environ Pollut, 2019, 253:872-881.
doi: 10.1016/j.envpol.2019.07.097 URL |
[43] |
Spina R, Saliba S, Dupire F, et al. Molecular identification of endophytic bacteria in Leucojum aestivum in vitro culture, NMR-based metabolomics study and LC-MS analysis leading to potential Amaryllidaceae alkaloid production[J]. Int J Mol Sci, 2021, 22(4):1773.
doi: 10.3390/ijms22041773 URL |
[44] |
Shweta S, Bindu JH, Raghu J, et al. Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecine from Miquelia dentata Bedd. (Icacinaceae)[J]. Phytomedicine, 2013, 20(10):913-917.
doi: 10.1016/j.phymed.2013.04.004 pmid: 23694750 |
[45] |
Ray T, Pandey SS, Pandey A, et al. Endophytic consortium with diverse gene-regulating capabilities of benzylisoquinoline alkaloids biosynthetic pathway can enhance endogenous morphine biosynjournal in Papaver somniferum[J]. Front Microbiol, 2019, 10:925.
doi: 10.3389/fmicb.2019.00925 URL |
[46] |
Hemashenpagam N, Selvaraj T. Effect of arbuscular mycorrhizal(AM)fungus and plant growth promoting rhizomicroorganisms(PGPR’s)on medicinal plant Solanum viarum seedlings[J]. J Environ Biol, 2011, 32(5):579-583.
pmid: 22319872 |
[47] |
Ferreira MC, de Carvalho CR, Bahia M, et al. Plant-associated fungi:methods for taxonomy, diversity, and bioactive secondary metabolite bioprospecting[J]. Methods Mol Biol, 2021, 2232:85-112.
doi: 10.1007/978-1-0716-1040-4_9 pmid: 33161542 |
[48] |
Wielkopolan B, Obrępalska-Stęplowska A. Three-way interaction among plants, bacteria, and coleopteran insects[J]. Planta, 2016, 244(2):313-332.
doi: 10.1007/s00425-016-2543-1 pmid: 27170360 |
[49] | Romero D, de Vicente A, Rakotoaly RH, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca[J]. Mol Plant Microbe Interactions®, 2007, 20(4):430-440. |
[50] |
Romero D, Pérez-García A, Rivera ME, et al. Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca[J]. Appl Microbiol Biotechnol, 2004, 64(2):263-269.
pmid: 13680203 |
[51] |
Wang T, Liang YF, Wu MB, et al. Natural products from Bacillus subtilis with antimicrobial properties[J]. Chin J Chem Eng, 2015, 23(4):744-754.
doi: 10.1016/j.cjche.2014.05.020 URL |
[52] |
Davey ME, Caiazza NC, O’Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1[J]. J Bacteriol, 2003, 185(3):1027-1036.
doi: 10.1128/JB.185.3.1027-1036.2003 pmid: 12533479 |
[53] |
Ntana F, Bhat WW, Johnson SR, et al. A sesquiterpene synthase from the endophytic fungus Serendipita indica catalyzes formation of viridiflorol[J]. Biomolecules, 2021, 11(6):898.
doi: 10.3390/biom11060898 URL |
[54] |
López SMY, Pastorino GN, Balatti PA. Volatile organic compounds profile synthesized and released by endophytes of tomato(Solanum lycopersici L.)and their antagonistic role[J]. Arch Microbiol, 2021, 203(4):1383-1397.
doi: 10.1007/s00203-020-02136-y URL |
[55] | 舒雪纯, 张影波, 官玲亮, 等. 艾纳香内生真菌粉红粘帚霉抗菌次生代谢产物[J]. 生物工程学报, 2020, 36(8):1650-1658. |
Shu XC, Zhang YB, Guan LL, et al. Antibacterial secondary metabolites of Clonostachys rosea, an endophytic fungus from Blumea balsamifera(L.)DC[J]. Chin J Biotechnol, 2020, 36(8):1650-1658. | |
[56] |
Ding Z, Wang X, Kong FD, et al. Overexpression of global regulator Talae1 leads to the discovery of new antifungal polyketides from endophytic fungus Trichoderma afroharzianum[J]. Front Microbiol, 2020, 11:622785.
doi: 10.3389/fmicb.2020.622785 URL |
[57] |
Rahman SU, Khalid M, Kayani SI, et al. The ameliorative effects of exogenous inoculation of Piriformospora indica on molecular, biochemical and physiological parameters of Artemisia annua L. under arsenic stress condition[J]. Ecotoxicol Environ Saf, 2020, 206:111202.
doi: 10.1016/j.ecoenv.2020.111202 URL |
[58] |
Cheng C, Nie ZW, Wang R, et al. Metal(loid)-resistant Bacillus megaterium H3 reduces arsenic uptake in rice(Oryza sativa Nanjing 5055)at different growth stages in arsenic-contaminated soil[J]. Geoderma, 2020, 375:114510.
doi: 10.1016/j.geoderma.2020.114510 URL |
[59] |
Lu Q, Weng YN, You Y, et al. Inoculation with abscisic acid(ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil[J]. Environ Pollut, 2020, 257:113497.
doi: 10.1016/j.envpol.2019.113497 URL |
[60] |
Kamal N, Liu ZW, Qian C, et al. Improving hybrid Pennisetum growth and cadmium phytoremediation potential by using Bacillus megaterium BM18-2 spores as biofertilizer[J]. Microbiol Res, 2021, 242:126594.
doi: 10.1016/j.micres.2020.126594 URL |
[61] |
Lubna, Asaf S, Hamayun M, et al. Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system[J]. Plant Physiol Biochem, 2018, 128:13-23.
doi: 10.1016/j.plaphy.2018.05.007 URL |
[62] | Jan FG, Hamayun M, Hussain A, et al. A promising growth promoting Meyerozyma caribbica from Solanum xanthocarpum alleviated stress in maize plants[J]. Biosci Rep, 2019, 39(10)BSR20190290. |
[63] | Lastochkina O. Bacillus subtilis-mediated abiotic stress tolerance in plants[M]//Bacilli in Climate Resilient Agriculture and Bioprospecting. Cham: Springer International Publishing, 2019:97-133. |
[64] |
Xie ZC, Chu YK, Zhang WJ, et al. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch[J]. Environ Exp Bot, 2019, 158:99-106.
doi: 10.1016/j.envexpbot.2018.11.021 URL |
[65] |
Jiang W, Pan R, Wu C, et al. Piriformospora indica enhances freezing tolerance and post-thaw recovery in Arabidopsis by stimulating the expression of CBF genes[J]. Plant Signal Behav, 2020, 15(4):1745472.
doi: 10.1080/15592324.2020.1745472 pmid: 32228382 |
[66] |
Khan MA, Asaf S, Khan AL, et al. Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress[J]. BMC Microbiol, 2020, 20(1):1-14.
doi: 10.1186/s12866-019-1672-7 URL |
[1] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[2] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[3] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[4] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[5] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[6] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[7] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[8] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[9] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[10] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[11] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[12] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[13] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[14] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[15] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||