Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (10): 128-136.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1454
Previous Articles Next Articles
LIU Qian-qian1,2(), TANG Zi-jing2, LI Tian-zhen2, LI Bao-ku1(), ZHU Lei-lei2()
Received:
2020-11-27
Online:
2021-10-26
Published:
2021-11-12
Contact:
LI Bao-ku,ZHU Lei-lei
E-mail:liuqq@tib.cas.cn;libaoku@hbu.edu.cn;zhu_ll@tib.cas.cn
LIU Qian-qian, TANG Zi-jing, LI Tian-zhen, LI Bao-ku, ZHU Lei-lei. Heterologous Expression of Quinone Oxidoreductase and Its Role in the Decolorization of Azo Dyes[J]. Biotechnology Bulletin, 2021, 37(10): 128-136.
Fig.1 SDS-PAGE of hNQO1 heterologously expressed A:M:protein marker;1:induced hNQO1;2: supernatant after crushing. B: M:protein marker;1: purified hNQO1
名称Name | 化学结构式Chemical structural formula | 分子质量Molecular mass/kD | 吸收波长Absorption wavelength/nm |
---|---|---|---|
刚果红 Congo red | | 696.7 | 434 |
苋菜红 Amaranth | | 604.47 | 520 |
活性黑5 Reactive black 5 | | 991.82 | 596 |
Table 1 Dye names and their maximum absorption wavelengths
名称Name | 化学结构式Chemical structural formula | 分子质量Molecular mass/kD | 吸收波长Absorption wavelength/nm |
---|---|---|---|
刚果红 Congo red | | 696.7 | 434 |
苋菜红 Amaranth | | 604.47 | 520 |
活性黑5 Reactive black 5 | | 991.82 | 596 |
名称Name | 化学结构Chemical structural formula | 分子质量Molecular mass/kD |
---|---|---|
1,4-二羟基蒽醌 1,4-Dihydroxyant- hracene-9,10-dion | | 240.2109 |
1,4-萘醌 1,4-Naphthoqu- inone | | 158.15 |
甲萘醌 Menadione | | 172.18 |
蒽醌 Anthraquinone | | 208.2121 |
甲基对苯醌 2-Methlcyclohexa-2,5-diene-1,4-dione | | 122.1213 |
蒽醌-2-磺酸钠 Sodium anthraqu-inone-2-Sulfonate | | 310.2571 |
Table 2 Names and structures of small molecular mediators
名称Name | 化学结构Chemical structural formula | 分子质量Molecular mass/kD |
---|---|---|
1,4-二羟基蒽醌 1,4-Dihydroxyant- hracene-9,10-dion | | 240.2109 |
1,4-萘醌 1,4-Naphthoqu- inone | | 158.15 |
甲萘醌 Menadione | | 172.18 |
蒽醌 Anthraquinone | | 208.2121 |
甲基对苯醌 2-Methlcyclohexa-2,5-diene-1,4-dione | | 122.1213 |
蒽醌-2-磺酸钠 Sodium anthraqu-inone-2-Sulfonate | | 310.2571 |
[1] | 郑金来, 李君文, 晁福寰. 生物降解常见染料的研究进展[J]. 环境污染治理技术与设备, 2000, 1(3):39-43. |
Zheng JL, Li JW, Chao FH, Advance in study of common dyes degradation of microorganism[J]. Techniques and Equipments for Environmental Pollution Control, 2000, 1(3):39-43. | |
[2] |
Chengalroyen MD, Dabbs ER. The microbial degradation of azo dyes:minireview[J]. World Journal of Microbiology and Biotechnology, 2013, 29:389-399.
doi: 10.1007/s11274-012-1198-8 pmid: 23108664 |
[3] | 秦彬, 谷晋川, 殷萍, 等. 染料废水处理技术研究进展[J]. 化工环保. 2021, 41(1):9-18. |
Qin B, Gu JC, Yin P, et al. Research progresses on dye wastewater treatment technology[EB/OL]. Environmental Protection of Chemical Industry. | |
[4] | 周觅. 偶氮还原酶的醒还原活性及其介导脱色应用[D]. 大连:大连理工大学, 2008. |
Zhou M. Quinone-reducing activity of azoreductases and their application in mediated decolorization[D]. Dalian:Dalian University of Technology, 2008. | |
[5] | 周觅, 刘广飞, 周集体, 等. 醌还原酶-醌类化合物对偶氮染料脱色的作用[J]. 环境科学, 2009, 30(6):1810-1817. |
Zhou M, Liu GF, Zhou JT et al. Decolorization of azo dyes using quinone reductase and quinoid compounds[J]. Environmental Science, 2009, 30(6):1810-1817. | |
[6] |
Chen H, Hopper SL, Cerniglia CE. Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein[J]. Microbiology, 2005, 151:1433-1441.
doi: 10.1099/mic.0.27805-0 URL |
[7] | 焦亮. 强化生物降解偶氮染料脱色作用研究[D]. 杭州:浙江工商大学, 2018. |
Jiao L. Study on the mechanism of the decolorization of biological degradation azo dyes[D]. Hangzhou:Zhejiang Gongshang University, 2018. | |
[8] | 许玫英, 郭俊, 岑英华, 等. 染料的生物降解研究[J]. 微生物学通报, 2006, 33(1):138-143. |
Xu MY, Guo J, Cen YH, et al. Review of studies on the dye biodegradation[J]. Microbiology China, 2006, 33(1):138-143. | |
[9] |
Albena T, Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1(NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector[J]. Archives of Biochemistry and Biophysics, 2010, 501:116-123.
doi: 10.1016/j.abb.2010.03.019 pmid: 20361926 |
[10] |
Lienhart WD, Gudipati V, Uhl MK, et al. Collapse of the native structure caused by a single amino acid exchange in human NAD(P)H:quinone oxidoreductase[J]. The FEBS Journal, 2014, 281(20):4691-4704.
doi: 10.1111/febs.2014.281.issue-20 URL |
[11] | Pey AL, Megarity CF, Timson DJ. FAD binding overcomes defects in activity and stability displayed by cancer-associated variants of human NQO1[J]. Biochimica et Biophysica Acta, 2014, 1842:2163-2173. |
[12] |
Bianchet MA, Erdemli SB, Amzel LM. Structure, function, and mechanism of cytosolic quinone reductases[J]. Vitamins and Hormones, 2008, 78:63-84.
doi: 10.1016/S0083-6729(07)00004-0 pmid: 18374190 |
[13] |
Siegel D, Gustafson DL, Dehn DL, et al. NAD(P)H:Quinone oxidoreductase 1:Role as a superoxide scavenger[J]. Molecular pharmacology, 2004, 65:1238-1247.
pmid: 15102952 |
[14] |
Lienhart WD, Strandback E, Gudipati V, et al. Catalytic competence, structure and stability of the cancer-associated R139W variant of the human NAD(P)H:quinone oxidoreductase 1(NQO1)[J]. The FEBS Journal, 2017, 284:1233-1245.
doi: 10.1111/febs.2017.284.issue-8 URL |
[15] |
Asher G, Dym O, Tsvetkov P, et al. The crystal structure of NAD(P)H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol[J]. Biochemistry, 2006, 45(20):6372-6378.
pmid: 16700548 |
[16] |
Gong X, Kole L, Iskander K, et al. NRH:quinone oxidoreductase 2 and NAD(P)H:quinone oxidoreductase 1 protect tumor suppressor p53 against 20s proteasomal degradation leading to stabilization and activation of p53[J]. Cancer Research, 2007, 67(11):5380-5388.
doi: 10.1158/0008-5472.CAN-07-0323 URL |
[17] |
Siegel D, Yan C, Ross D, et al. NAD(P)H:quinone oxidoreductase 1(NQO1)In the sensitivity and resistance to antitumor quinones[J]. Biochemical Pharmacology, 2012, 83:1033-1040.
doi: 10.1016/j.bcp.2011.12.017 pmid: 22209713 |
[18] |
Liu G, Zhou J, Wang J, et al. Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator[J]. Bioresource Technology, 2009, 100:2791-2795.
doi: 10.1016/j.biortech.2008.12.040 URL |
[19] |
Liu G, Zhou J, Fu QS, et al. The Escherichia coli azoreductase AzoR is involved in resistance to thiol-specific stress caused by electrophilic quinones[J]. Journal of Bacteriology, 2009, 191(20):6394-6400.
doi: 10.1128/JB.00552-09 URL |
[21] | Hong YG, Jun G, Zhi CX, et al. Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12[J]. Journal of Microbiology and Biotechnology, 2007, 17(3):428-437. |
[22] | Rahman MNA, Radzi FM, et al. Bacterial decolourization and degradation of azo dye[J]. Journal of Applied Environmental and Biological Sciences, 2017, 7(5):14-20. |
[23] | Wang ZW, Liang JS, Liang Y. Decolorization of reactive black 5 by a newly isolated bacterium Bacillus sp. YZU1[J]. International Biodeterioration & Biodegradation, 2013, 76:41-48. |
[24] |
Russ R, Rau J, Stolz A. The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria[J]. Applied Environmental Microbiology, 2000, 66(4):1429-1434.
doi: 10.1128/AEM.66.4.1429-1434.2000 URL |
[1] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[2] | JIA Chen-bo, SU Yi-huang, MA Xiu-mei, WANG Chun-li, XU Chun-yan. Medium Optimization for Laccase Production by Acrophialophora sp. Z45 and Its Decolorization of Dyes [J]. Biotechnology Bulletin, 2022, 38(6): 252-260. |
[3] | DOU Yue, LIU Mei-tong, LU An-na, WU Jia-jie, WANG Qun-qing, XU Qian. Regulatory Mechanism of Mediator Subunit MED25 on Multi-phytohormone Signaling Pathways [J]. Biotechnology Bulletin, 2018, 34(7): 40-47. |
[4] | YU Ying, XU Mei-xue ,LIU Jin-lei, FAN Rong ,FENG Hui-yong, LI Tian-ming. Metabolic Engineering for Modifying Corynebacterium glutamicum to Produce More Pyruvate [J]. Biotechnology Bulletin, 2016, 32(8): 226-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||