Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (12): 113-123.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0071
Previous Articles Next Articles
YU Qin1(), MA Xian-yong2, DENG Dun2(), WANG Yong-fei1()
Received:
2020-01-18
Online:
2021-12-26
Published:
2022-01-19
Contact:
DENG Dun,WANG Yong-fei
E-mail:oliviayu163@163.com;dengdun2008@126.com;wyfmsm@163.com
YU Qin, MA Xian-yong, DENG Dun, WANG Yong-fei. Optimization of Indole-degrading Conditions in Pig Manure Waste Water by Enteroccus hirae IDO5 and Analysis of Its Corresponding Degradation Pathway[J]. Biotechnology Bulletin, 2021, 37(12): 113-123.
Fig. 2 Phylogenetic tree based on 16S rRNA sequence of IDO5 Phylogenetic neighbor joining tree of IDO5 is constructed based on 16S rRNA gene sequences. The phylogenetic tree shows the relationships between individual isolates and species within the respective genus. Bootstrap values(expressed as percentages of 1 000 replications)given at nodes are > 50%. Bar 0.05% sequence variation. GenBank accession numbers are given in parentheses
Fig. 4 Effects of temperature on the degradation of indole in pig anure wastewater by IDO5 Error bars indicate the standard deviation and different letters reflect significant difference(P< 0.05)between treatments. The same below
菌株名称 Strain name | 降解特性 Degradation characteristics | 参考文献 Reference |
---|---|---|
Pseudomonas aeruginosaGs | 36 d时降解58.5-175 mg/L吲哚 58.5-175 mg/L indole was degraded after 36 d | [25] |
Comamonas sp. IDO1 | 至少需要160 h降解100 mg/L吲哚 100 mg/L indole was degraded after at least 160 h | [26] |
Xenophilus sp. IDO4 | 至少需要160 h降解100 mg/L吲哚 100 mg/L indole was degraded after at least 160 h | [26] |
Arthrobacter sp. B1 | 40 h降解117 mg/L吲哚 117 mg/L indole was degraded after 40 h | [27] |
Arthrobacter sp. SPG | 36 h降解58.5 mg/L吲哚 58.5 mg/L indole was degraded after 46 h | [28] |
Providencia sp. | 28 h降解100 mg/L吲哚 100 mg/L indole was degraded after 28 h | [29] |
Cupriavidus sp. SHE | 24 h降解100 mg/L吲哚 100 mg/L indole was degraded after 24 h | [23] |
Table 3 Resources of indole degrading bacteria
菌株名称 Strain name | 降解特性 Degradation characteristics | 参考文献 Reference |
---|---|---|
Pseudomonas aeruginosaGs | 36 d时降解58.5-175 mg/L吲哚 58.5-175 mg/L indole was degraded after 36 d | [25] |
Comamonas sp. IDO1 | 至少需要160 h降解100 mg/L吲哚 100 mg/L indole was degraded after at least 160 h | [26] |
Xenophilus sp. IDO4 | 至少需要160 h降解100 mg/L吲哚 100 mg/L indole was degraded after at least 160 h | [26] |
Arthrobacter sp. B1 | 40 h降解117 mg/L吲哚 117 mg/L indole was degraded after 40 h | [27] |
Arthrobacter sp. SPG | 36 h降解58.5 mg/L吲哚 58.5 mg/L indole was degraded after 46 h | [28] |
Providencia sp. | 28 h降解100 mg/L吲哚 100 mg/L indole was degraded after 28 h | [29] |
Cupriavidus sp. SHE | 24 h降解100 mg/L吲哚 100 mg/L indole was degraded after 24 h | [23] |
[1] |
Huang M, Kaliaguine S. Dehydration of monoethanolamine over alkali-exchanged zeolites[J]. Reaction Kinetics and Catalysis Letters, 1995, 56(1):21-36.
doi: 10.1007/BF02066947 URL |
[2] |
Mackie RI, Stroot PG, Varel VH. Biochemical identification and biological origin of key odor components in livestock waste[J]. Journal of Animal Science, 1998, 76(5):1331-1342.
pmid: 9621939 |
[3] |
Yanni AS. Synjournal of some new bisindole derivatives and their biological activity[J]. International Journal of Organic Chemistry, 2016, 6(4):187-191.
doi: 10.4236/ijoc.2016.64019 URL |
[4] |
Karchava AV, Melkonyan FS, Yurovskaya MA. New strategies for the synjournal of N-alkylated indoles(Review)[J]. Chemistry of Heterocyclic Compounds, 2012, 48(3):391-407.
doi: 10.1007/s10593-012-1006-2 URL |
[5] |
杨扬, 高克祥, 吴岩, 等. 吲哚乙酸跨界信号调节植物与细菌互作[J]. 生物技术通报, 2016, 32(8):14-21.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.08.003 |
Yang Y, Gao KX, Wu Y, et al. Indoleacetic acid cross-border signal regulates plant bacterial interaction[J]. Biotechnology Bulletin, 2016, 32(8):14-21. | |
[6] | Wang Y, Wan Z, Jia C, et al. Indole-based organic dyes with different electron donors for dye-sensitized solar cells[J]. Synthetic Metals, 2016, 657:46-55. |
[7] |
Song GX, Zhu CY, Hu YM, et al. Determination of organic pollutant in coking wastewater by dispersive liquid-liquid microextraction/GC/MS[J]. Journal of Separation Science, 2013, 36(9-10):1644-1651.
doi: 10.1002/jssc.201201151 URL |
[8] | 于洋洋, 王广智, 陈睿, 等. 吲哚好氧降解污泥的强化培养特性与降解效能研究[J]. 环境工程, 2018, 36(5):61-67. |
Yu YY, Wang GZ, Chen R, et al. Study on enhanced culture characteristics and degradation efficiency of indole aerobic degradation sludge[J]. Environmental Engineering, 2018, 36(5):61-67. | |
[9] |
Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule[J]. Trend in Microbiology, 2015, 23(11):707-718.
doi: 10.1016/j.tim.2015.08.001 URL |
[10] | 吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 298(6):14-22. |
Wu HW, Sun XQ, Liang BW, et al. Analysis on the current situation of livestock manure pollution and its treatment and resource utilization in China[J]. Journal of Agricultural Environmental Science, 2020, 298(6):14-22. | |
[11] |
Saatkamp HW, Mourits MCM, Howe KS. A framework for categorization of the economic impacts of outbreaks of highly contagious livestock diseases[J]. Transboundary and Emerging Diseases, 2016, 63(4):422-434.
doi: 10.1111/tbed.12286 pmid: 25382248 |
[12] |
Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mofarrah E, Mehranian M. Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation[J]. Journal of Hazardous Materials, 2005, 123(1/3):187-195.
doi: 10.1016/j.jhazmat.2005.03.042 URL |
[13] | Mcdermott JA, Hughes DH, Quinlin PM. Alkyl ethoxy sulfates. Absorption, distribution, excretion, and metabolite identification studies in rats and man[J]. Toxicology and Applied Pharmacology, 1975, 33(1):58. |
[14] |
Jansson FT. Mutagenicity of some indoles and related compounds in the Ames test[J]. Toxicology, 1982, 23(1):1-10.
doi: 10.1016/0300-483X(82)90036-1 URL |
[15] |
Hammond AC, Carlson JR, Breeze RG. Indole toxicity in cattle[J]. Veterinary Record, 1980, 107(15):344-346.
pmid: 7210436 |
[16] |
Sun H, Zheng M, Song J, et al. Multiple-species hormetic phenomena induced by indole:A case study on the toxicity of indole to bacteria, algae and human cells[J]. Science of the Total Environment, 2019, 657:46-55.
doi: 10.1016/j.scitotenv.2018.12.006 URL |
[17] | 杨冰玉, 林宇星, 戴春晓, 等. Alcaligenes sp. YBY降解吲哚的特性研究[J]. 环境科学与技术, 2018, 41(12):1-6. |
Yang BY, Lin YX, Dai CX, et al. Characteristics of indole degradation by Alcaligenes sp. YBY[J]. Environmental Science and Technology, 2018, 41(12):1-6. | |
[18] |
Yong YC, Zhong JJ. Recent advances in biodegradation in China:New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation[J]. Process Biochemistry, 2010, 45(12):1937-1943.
doi: 10.1016/j.procbio.2010.04.009 URL |
[19] |
Liu X, Xue P, Jia F, et al. A novel approach to efficient degradation of indole using co-immobilized horseradish peroxidase-syringaldehyde as biocatalyst[J]. Chemosphere, 2021, 262:128411.
doi: 10.1016/j.chemosphere.2020.128411 URL |
[20] | 刘紫嫣. Burkholderia sp. IDO3及其功能基因转化吲哚研究[D]. 大连:大连理工大学, 2017. |
Liu ZY. Burkholderia sp. IDO3[D]. Dalian:Dalian University of Technology, 2017. | |
[21] | Giles RL, Zackeru JC, Elliott GD, ParrowMW. Fungal growth necessary but not sufficient for effective biopulping of wood for lignocellulosic ethanol applications[J]. International Biodeterioration & Biodegradation, 2012, 67:1-7. |
[22] | Sadauskas M, Vaitekūnas J, Gasparavičiūtė R, et al. Indole biodegradation in Acinetobacter sp. strain O153:genetic and biochemical characterization[J]. Applied and Environmental Microbiology, 2017, 83(19):e01453-17. |
[23] |
Qu YY, Shen E, Ma Q, et al. Biodegradation of indole by anewly isolated Cupriavidus sp. SHE[J]. Journal of Environmental Sciences, 2015, 34(8):126-132.
doi: 10.1016/j.jes.2015.01.023 URL |
[24] | 邵栓, 常娟, 王平, 等. 复合微生物制剂的研制及对猪粪便中吲哚的降解作用[J]. 畜牧与兽医, 2019(8):30-36. |
Shao S, Chang J, Wang P, et al. Preparation of compound microbial preparation and its degradation of indole in pig feces[J]. Animal Husbandry and Veterinary, 2019(8):30-36. | |
[25] | Yin B, Gu JD, Wan N. Degradation of indole by enrichment culture and Pseudomonas aeruginosa Gs isolated from mangrove sediment[J]. International Biodeterioration& Biodegradation, 2005, 56(4):243-248. |
[26] |
Ma Q, Qu Y, Zhang X, et al. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems[J]. Scientific Reports, 2015, 5(1):17674.
doi: 10.1038/srep17674 URL |
[27] |
Kim M, Lee JH, Kim E, et al. Isolation ofindole utilizing bacteria Arthrobacter sp. and Alcaligenes sp. from livestock waste[J]. Indian Journal of Microbiology, 2016, 56(2):158-166.
doi: 10.1007/s12088-016-0570-z URL |
[28] | Arora PK, Bae H. Identification of new metabolites of bacterial transformation of indole by gas chromatography-mass spectrometry and high performance liquid chromatography[J]. International Journal of Analytical Chemistry, 2014, 2014:239641. |
[29] | 戴春晓, 杨婧, 房皓, 等. 一株新颖的Providencia sp. 菌降解吲哚及合成靛蓝的特性研究[J]. 环境科学学报, 2018, 38(9):3590-3596. |
Dai CX, Yang J, Fang H, et al. Degradation characteristics of indole and biosynjournal of indigo by a novel bacteria Providencia sp.[J]. Acta Scientiae Circumstantiae, 2018, 38(9):3590-3596. | |
[30] |
Ma Q, Zhang X, Qu Y. Biodegradation and biotransformation of indole:advances and perspectives[J]. Frontiers in Microbiology, 2018, 9:2625.
doi: 10.3389/fmicb.2018.02625 URL |
[1] | LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties [J]. Biotechnology Bulletin, 2023, 39(5): 286-296. |
[2] | MU De-tian, WAN Ling-yun, ZHANG Yao, WEI Shu-gen, LU Ying, FU Jin-e, TIAN Yi, PAN Li-mei, TANG Qi. House-keeping Genes Screening and Expression Patterns Analysis of Genes Involved in Alkaloid Biosynthesis in Uncaria rhynchophylla [J]. Biotechnology Bulletin, 2023, 39(2): 126-138. |
[3] | DU Jia-hui, XU Wei-fang, YANG Xiao-dong, TAN Song, YIN Deng-ke, LIU Yuan-xu. Isolation and Screening of Endophytes Producing Indole Acetic Acid from Polygonatum cyrtonema Hua. and Its Effect on Seed Germination of Polygonatum [J]. Biotechnology Bulletin, 2022, 38(12): 223-232. |
[4] | LI Pei-gen, YAO Ya-qian, SONG Ji-xiang, WANG Tian-qi, ZHOU Bo, WANG Bing, LIN Rong-shan. Isolation and Identification of IAA-producing Bacillus sp on Potato Rhizosphere and Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2020, 36(9): 109-116. |
[5] | WAN Shui-xia, WANG Jing, LI Fan, JIANG Guang-yue, XU Wen-jing, LIU Zuo-jun. Screening and Identification of Phosphate Solubilizing Bacteria from Maize Rhizosphere Soil and Its Growth Promoting Effect [J]. Biotechnology Bulletin, 2020, 36(5): 98-103. |
[6] | MA Jin-jin, GE Bei-bei, SHI Li-ming, LIU Bing-hua, WEI Qiu-he, ZHANG Ke-cheng. Optimization of Fermentation Medium for Streptomyces roseoflavus NKZ-259 [J]. Biotechnology Bulletin, 2019, 35(2): 85-92. |
[7] | ZHANG Yi-li, LIU Zhao-ping, LU Min-yi, CAI Ming-yong, WU Gen-peng. Effect of CO2 Partial Pressure on Subculture of Anchorage-dependent Cells MRC-5 [J]. Biotechnology Bulletin, 2019, 35(10): 169-173. |
[8] | LIU Ye, LIU Xiao-dan, ZHANG Lin-li, WU Yue, WANG Guo-wen, WANG iang, JIANG Ying. Screening,Identification of Multifunctional Peanut Root-promoting Rhizobacteria and Its Promoting Effects on Peanuts(Arachis hypogaea L.) [J]. Biotechnology Bulletin, 2017, 33(10): 125-134. |
[9] | YANG Yang, GAO Ke-xiang, WU Yan, LIU Xiao-guang. Indole-3-acetic Acid-mediated Cross-kingdom Signalling Involved in Plant-bacteria Interactions [J]. Biotechnology Bulletin, 2016, 32(8): 14-21. |
[10] | Lu Guangxin, Chen Xiurong, Wang Junbang, Wu Chu4. A Study on Identification and Enzyme Characteristics of a Xylanase Producing Strain Isolated and Selected from the Soil in Alpine Meadow [J]. Biotechnology Bulletin, 2014, 0(5): 162-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||