Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (12): 124-131.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0149
Previous Articles Next Articles
XIE Guo-zhen(), TANG Yuan, WU Yi, HUANG Li-li, TAN Zhou-jin()
Received:
2020-02-05
Online:
2021-12-26
Published:
2022-01-19
Contact:
TAN Zhou-jin
E-mail:191431657@qq.com;tanzhjin@sohu.com
XIE Guo-zhen, TANG Yuan, WU Yi, HUANG Li-li, TAN Zhou-jin. Effects of Total Glycosides of Qiwei Baizhu Powder on Intestinal Microbiota and Enzyme Activities in Diarrhea Mice[J]. Biotechnology Bulletin, 2021, 37(12): 124-131.
Fig. 1 Effects of total glycosides of QWBZP on the food intake of mice with dysbacteria-diarrhea N:Normal group. R:Recovery group. TW:QWBZP(Qiwei Baizhu Powder)decoction group. TL:Low-dose glycosides group. TM:Medium-dose glycosides group. TH:High-dose glycosides group,the same below. In horizontal ordinate,1:Adaptive phase. 2:Modeling phase. 3:Treatment phase
分组Group | 初始体重Initial weight/g | 增重率 Weight gain rate/% | |||
---|---|---|---|---|---|
适应期Adaptive phase | 造模期Modeling phase | 治疗期Treatment phase | |||
N | 18.57 ± 0.95 | 35.19 ± 7.12 | 20.59 ± 7.55 | 6.80 ± 2.69 | |
R | 18.34 ± 0.64 | 34.66 ± 4.94 | 12.20 ± 4.12 | 14.55 ± 2.53 A | |
TW | 18.20 ± 0.48 | 38.78 ± 2.84 | 14.35 ± 6.09 | 11.36 ± 8.66 | |
TL | 18.17 ± 0.41 | 34.95 ± 1.41 | 15.43 ± 8.54 | 9.92 ± 3.36 | |
TM | 17.81 ± 0.83 | 34.74 ± 3.49 | 15.11 ± 6.55 | 11.18 ± 9.78 | |
TH | 18.01 ± 0.74 | 37.18 ± 4.56 | 13.36 ± 7.34 | 9.70 ± 10.13 |
Table 1 Effects of total glycosides of QWBZP on the body weight of mice with dysbacteria-diarrhea(n = 5)
分组Group | 初始体重Initial weight/g | 增重率 Weight gain rate/% | |||
---|---|---|---|---|---|
适应期Adaptive phase | 造模期Modeling phase | 治疗期Treatment phase | |||
N | 18.57 ± 0.95 | 35.19 ± 7.12 | 20.59 ± 7.55 | 6.80 ± 2.69 | |
R | 18.34 ± 0.64 | 34.66 ± 4.94 | 12.20 ± 4.12 | 14.55 ± 2.53 A | |
TW | 18.20 ± 0.48 | 38.78 ± 2.84 | 14.35 ± 6.09 | 11.36 ± 8.66 | |
TL | 18.17 ± 0.41 | 34.95 ± 1.41 | 15.43 ± 8.54 | 9.92 ± 3.36 | |
TM | 17.81 ± 0.83 | 34.74 ± 3.49 | 15.11 ± 6.55 | 11.18 ± 9.78 | |
TH | 18.01 ± 0.74 | 37.18 ± 4.56 | 13.36 ± 7.34 | 9.70 ± 10.13 |
分组 Group | 脾脏指数 Spleen index/% | 胸腺指数 Thymus index/% | 肝脏指数 Liver index/% |
---|---|---|---|
N | 0.30 ± 0.06 | 0.38 ± 0.04 | 5.57 ± 0.29 |
R | 0.38 ± 0.04 | 0.37 ± 0.08 | 5.30 ± 0.29 |
TW | 0.31 ± 0.03 b | 0.41 ± 0.03 | 5.21 ± 0.69 |
TL | 0.39 ± 0.10 | 0.35 ± 0.07 | 5.16 ± 0.45 |
TM | 0.33 ± 0.05 | 0.42 ± 0.05 | 5.08 ± 0.36 |
TH | 0.41 ± 0.03 AC | 0.41 ± 0.05 | 5.58 ± 0.34 |
Table 2 Effects of total glycosides of QWBZP on the visceral index of mice with dysbacteria-diarrhea(n = 5)
分组 Group | 脾脏指数 Spleen index/% | 胸腺指数 Thymus index/% | 肝脏指数 Liver index/% |
---|---|---|---|
N | 0.30 ± 0.06 | 0.38 ± 0.04 | 5.57 ± 0.29 |
R | 0.38 ± 0.04 | 0.37 ± 0.08 | 5.30 ± 0.29 |
TW | 0.31 ± 0.03 b | 0.41 ± 0.03 | 5.21 ± 0.69 |
TL | 0.39 ± 0.10 | 0.35 ± 0.07 | 5.16 ± 0.45 |
TM | 0.33 ± 0.05 | 0.42 ± 0.05 | 5.08 ± 0.36 |
TH | 0.41 ± 0.03 AC | 0.41 ± 0.05 | 5.58 ± 0.34 |
分组 Group | 细菌 Bacteria /(106 CFU·g-1) | 大肠杆菌 Escherichia coli /(106 CFU·g-1) | 双歧杆菌 Bifidobacterium /(107 CFU·g-1) | 乳酸菌 Lactobacillus /(107 CFU·g-1) |
---|---|---|---|---|
N | 1.10 ± 0. 10 | 0.81 ± 0.07 | 2.79 ± 0.82 | 4.53 ± 1.14 |
R | 2.63 ± 0.21 A | 0.97 ± 0.06 a | 0.57 ± 0.08 a | 0.65 ± 0.09 a |
TW | 2.04 ± 0.15 Ab | 0.84 ± 0.02 b | 0.60 ± 0.05 a | 1.22 ± 0.78 a |
TL | 0.34 ± 0.11 ABC | 9.09 ± 0.30 ABC | 2.40 ± 0.04 BC | 8.20 ± 2.80 bc |
TM | 15.37 ± 0.50 ABCD | 2.90 ± 0.07 ABCD | 2.70 ± 1.99 | 5.37 ± 0.35 BC |
TH | 2.83 ± 1.20 dE | 1.21 ± 0.07 AbCDE | 2.80 ± 1.84 | 0.96 ± 0.07 aBdE |
Table 3 Effects of total glycosides of QWBZP on the intestinal microbiota of mice with dysbacteria-diarrhea(n = 3)
分组 Group | 细菌 Bacteria /(106 CFU·g-1) | 大肠杆菌 Escherichia coli /(106 CFU·g-1) | 双歧杆菌 Bifidobacterium /(107 CFU·g-1) | 乳酸菌 Lactobacillus /(107 CFU·g-1) |
---|---|---|---|---|
N | 1.10 ± 0. 10 | 0.81 ± 0.07 | 2.79 ± 0.82 | 4.53 ± 1.14 |
R | 2.63 ± 0.21 A | 0.97 ± 0.06 a | 0.57 ± 0.08 a | 0.65 ± 0.09 a |
TW | 2.04 ± 0.15 Ab | 0.84 ± 0.02 b | 0.60 ± 0.05 a | 1.22 ± 0.78 a |
TL | 0.34 ± 0.11 ABC | 9.09 ± 0.30 ABC | 2.40 ± 0.04 BC | 8.20 ± 2.80 bc |
TM | 15.37 ± 0.50 ABCD | 2.90 ± 0.07 ABCD | 2.70 ± 1.99 | 5.37 ± 0.35 BC |
TH | 2.83 ± 1.20 dE | 1.21 ± 0.07 AbCDE | 2.80 ± 1.84 | 0.96 ± 0.07 aBdE |
[1] |
Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans[J]. Cell, 2016, 164(3):337-340.
doi: 10.1016/j.cell.2016.01.013 pmid: 26824647 |
[2] |
Vernocchi P, del Chierico F, Putignani L. Gut microbiota metabolism and interaction with food components[J]. Int J Mol Sci, 2020, 21(10):3688.
doi: 10.3390/ijms21103688 URL |
[3] |
Savage N. The complex relationship between drugs and the microbiome[J]. Nature, 2020, 577(7792):S10-S11.
doi: 10.1038/d41586-020-00196-0 URL |
[4] |
Xu J, Chen HB, Li SL. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota[J]. Med Res Rev, 2017, 37(5):1140-1185.
doi: 10.1002/med.2017.37.issue-5 URL |
[5] |
Haiser HJ, Turnbaugh PJ. Is it time for a metagenomic basis of therapeutics?[J]. Science, 2012, 336(6086):1253-1255.
doi: 10.1126/science.1224396 pmid: 22674325 |
[6] | Aitoro R, Paparo L, Amoroso A, et al. Gut microbiota as a target for preventive and therapeutic intervention against food allergy[J]. Nutrients, 2017, 9(7):E672. |
[7] |
Qi YF, Kim S, Richards EM, et al. Gut microbiota:potential for a unifying hypojournal for prevention and treatment of hypertension[J]. Circ Res, 2017, 120(11):1724-1726.
doi: 10.1161/CIRCRESAHA.117.310734 URL |
[8] | 谢果珍, 唐圆, 姜珊, 等. 七味白术散总苷的提取工艺优化及体外抑菌活性初探[J]. 时珍国医国药, 2020, 31(6):1351-1354. |
Xie GZ, Tang Y, Jiang S, et al. Optimization of extracting process and antibacterial effect in vitro of total glycosides in Qiwei Baizhu powder[J]. Lishizhen Med Mater Med Res, 2020, 31(6):1351-1354. | |
[9] | 谭周进, 吴海, 刘富林, 等. 超微七味白术散对肠道微生物及酶活性的影响[J]. 生态学报, 2012, 32(21):6856-6863. |
Tan ZJ, Wu H, Liu FL, et al. Effect of ultra-micro powder qiweibaishusan on the intestinal microbiota and enzyme activities in mice[J]. Acta Ecol Sin, 2012, 32(21):6856-6863. | |
[10] | 惠华英, 申可佳, 李丹丹, 等. 七味白术散对抗生素所致腹泻小鼠肠道乳糖酶活性的影响[J]. 中国微生态学杂志, 2018, 30(10):1126-1129. |
Hui HY, Shen KJ, Li DD, et al. Influence of Qiwei Baizhu powder on the lactase activity in intestine of mice with diarrhea induced by antibiotics[J]. Chin J Microecol, 2018, 30(10):1126-1129. | |
[11] | 郭抗萧, 彭昕欣, 毛娅男, 等. 七味白术散对菌群失调腹泻小鼠肠道蔗糖酶活性的影响[J]. 中国微生态学杂志, 2019, 31(10):1130-1134. |
Guo KX, Peng XX, Mao YN, et al. Effect of Qiwei Baizhu San on intestinal sucrase activity in mice with diarrhea[J]. Chin J Microecol, 2019, 31(10):1130-1134. | |
[12] |
Wang QS, Wang YL, Zhang WY, et al. Puerarin from Pueraria lobata alleviates the symptoms of irritable bowel syndrome-diarrhea[J]. Food Funct, 2021, 12(5):2211-2224.
doi: 10.1039/D0FO02848G URL |
[13] |
Liang W, Zhou K, Jian P, et al. Ginsenosides improve nonalcoholic fatty liver disease via integrated regulation of gut microbiota, inflammation and energy homeostasis[J]. Front Pharmacol, 2021, 12:622841.
doi: 10.3389/fphar.2021.622841 URL |
[14] |
Zhu L, Xu LZ, Zhao S, et al. Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis[J]. Appl Microbiol Biotechnol, 2020, 104(12):5449-5460.
doi: 10.1007/s00253-020-10527-w URL |
[15] |
Fan L, Peng Y, Wang J, et al. Total glycosides from stems of Cistanche tubulosa alleviate depression-like behaviors:bidirectional interaction of the phytochemicals and gut microbiota[J]. Phytomedicine, 2021, 83:153471.
doi: 10.1016/j.phymed.2021.153471 pmid: 33636477 |
[16] | 武密山. 方剂学[M]. 北京: 科学出版社, 2017. |
Wu MS. Chinese medical formulas[M]. Beijing: Science Press, 2017. | |
[17] | 惠华英. 葛根芩连汤对肠道湿热证泄泻小鼠疗效的微生态学机理研究[D]. 长沙:湖南中医药大学, 2020 |
Hui HY. Study on microecological mechanism of Ge-gen-qin-lian decoction on diarrheal mice with intestinal dampness-heat syndrome[D]. Changsha:Hunan University of Chinese Medicine, 2020. | |
[18] | Azad MAK, Sarker M, Li T, et al. Probiotic species in the modulation of gut microbiota:An overview[J]. Biomed Res Int, 2018, 2018:9478630. |
[19] | 刘海芳, 马军辉, 金辽, 等. 水稻土FDA水解酶活性的测定方法及应用[J]. 土壤学报, 2009, 46(2):365-367. |
Liu HF, Ma JH, Jin L, et al. Determination of activity of fda hydrolysis in paddy soils and its application in Taihu lake region[J]. Acta Pedol Sin, 2009, 46(2):365-367. | |
[20] | 唐圆, 吴仪, 惠华英, 等. 痛泻要方对肝气乘脾泄泻小鼠肠道微生物活度的影响[J]. 中国微生态学杂志, 2020, 32(1):17-20. |
Tang Y, Wu Y, Hui HY, et al. Effect of Tongxieyaofang prescription on intestinal microbial activity in mice with Ganqichenpi diarrhea[J]. Chin J Microecol, 2020, 32(1):17-20. | |
[21] |
Puertolas MV, Fifi AC. The role of disaccharidase deficiencies in functional abdominal pain disorders—A narrative review[J]. Nutrients, 2018, 10(12):1835-1846.
doi: 10.3390/nu10121835 URL |
[22] |
Sun JH, Lin JM, Parashette K, et al. Association of lymphocytic colitis and lactase deficiency in pediatric population[J]. Pathol Res Pract, 2015, 211(2):138-144.
doi: 10.1016/j.prp.2014.11.009 URL |
[1] | WANG Song, JIAN Xiao-ping, PAN Wan-shu, ZHANG Yong-guang, WANG Tao, YOU Ling. Effects of Fermented Corn Xiaoqu Distiller's Grains Feed on the Intestinal Microbiota of Growing-Finishing Pigs [J]. Biotechnology Bulletin, 2022, 38(9): 248-257. |
[2] | CHEN Tian-ci, WU Shao-lan, YANG Guo-hui, JIANG Dan-xia, JIANG Yu-ji, CHEN Bing-zhi. Effects of Ganoderma resinaceum Alcohol Extract on Sleep and Intestinal Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(8): 225-232. |
[3] | ZHAO Zhong-juan, YANG Kai, HU Jin-dong, WEI Yan-li, LI Ling, XU Wei-sheng, LI Ji-shun. Effects of Trichoderma harzianum ST02 on the Growth of Peppermint and Physicochemical Properties of Root Zone Soil Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(7): 224-235. |
[4] | YUAN Cun-xia, LI Yan-nan, ZHANG Xiao-chong, YANG Rui, LIU Jian-li, LI Jing-yu. Physiological and Biochemical Response Characteristics of Bacillus sp. ZJS3 Under As3+ Stress [J]. Biotechnology Bulletin, 2022, 38(7): 236-246. |
[5] | WANG Xiao-qin, HUANG Yin-ping, WANG Wei-qian, WU Ping, QUAN Shu. Expression and Purification of the MLL3SET Protein with a Site-directed Mutation of an Unnatural Amino Acid [J]. Biotechnology Bulletin, 2022, 38(3): 194-202. |
[6] | JIA Hai-hong, LI Bing-qing. Research Progress in the Post-translational Modification of Superoxide Dismutase [J]. Biotechnology Bulletin, 2022, 38(2): 237-244. |
[7] | WU Qi-man, TIAN Shi-han, LI Yun-ye, PAN Ying-jie, ZHANG Ying. Effects of Microbial Fertilizer on Cucumis sativus L. Growth,Yield and Quality [J]. Biotechnology Bulletin, 2022, 38(1): 125-131. |
[8] | YUAN Yuan, WANG Lei, SHI Ya-wei. Research Advances in Strategies for Improving the Activity of Microbial-derived Alkaline Proteases [J]. Biotechnology Bulletin, 2021, 37(5): 231-236. |
[9] | CHEN Xiao-yu, ZHANG Jian, ZHANG Xin-ya, TANG Yu-ting, SHAO Yu-chen, LUO Zhi-dan, LU Chen. A Rapid and Accurate Method for Tth DNA Polymerase Activity Assay [J]. Biotechnology Bulletin, 2021, 37(5): 281-286. |
[10] | JIN Qiu-xia, WANG Si-hong, JIN Li-hua. Research Progress on Drosophila Intestinal Stem Cells and Intestinal Microflora [J]. Biotechnology Bulletin, 2021, 37(4): 245-250. |
[11] | TAO Zhi-dong, HE Yan-hui, DENG Zi-he, SUN Lin-lin, WU Zhan-sheng. Screening of High-efficiency Cellulose-degrading Microorganism from Spent Lentinula edodes Substrate and Optimization of Its Enzyme Production [J]. Biotechnology Bulletin, 2021, 37(11): 158-165. |
[12] | TIAN Geng, GAO Wei-qiang, CHEN Xiao-bo, ZHANG Chun-xiao. Directed Mutagenesis of β-mannanase Gene from Bacillus licheniformis KD-1 for Improving Enzyme Activity and Stability [J]. Biotechnology Bulletin, 2021, 37(10): 100-109. |
[13] | ZHAO Xu, XU Qun, HOU Yan-ru, LI Ming-yu, ZHANG Ya-ning, WANG Hai. Effects of ANGPTL4 on Intestinal Microbiota Affecting Lipid Metabolism of Animals [J]. Biotechnology Bulletin, 2020, 36(6): 230-235. |
[14] | WANG Jing, DAI Dong, WU Shu-geng, ZHANG Hai-jun, QI Guang-hai. Advances in Successional Development and Early Establishment of the Chicken Intestinal Microbiota [J]. Biotechnology Bulletin, 2020, 36(2): 1-8. |
[15] | WANG Xiang-feng, WANG Qiao, YUAN Hui-jun, WANG Li. Screening and Identification of High-yield Feruloyl Esterase Strains and Optimizing of the Enzyme Activity Assay Conditions [J]. Biotechnology Bulletin, 2020, 36(10): 135-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||