Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (2): 132-140.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0210
Previous Articles Next Articles
GUAN Yi1(), LI Xin1, WANG Ding-yi2, DU Xi3, ZHANG Long-bin1, YE Xiu-yun1()
Received:
2021-02-24
Online:
2022-02-26
Published:
2022-03-09
Contact:
YE Xiu-yun
E-mail:gy@fzu.edu.cn;xiuyunye@fzu.edu.cn
GUAN Yi, LI Xin, WANG Ding-yi, DU Xi, ZHANG Long-bin, YE Xiu-yun. Functional Study of BbRho5 on the Growth Rate of Beauveria bassiana[J]. Biotechnology Bulletin, 2022, 38(2): 132-140.
引物名称 Primer | 序列 Sequence(5'-3') |
---|---|
rho5-up-F | AAAAAGGAATTCCGTCGCCAACATCTCCATC |
rho5-up-R | AAAAACGGGATCCGTCGTCGGTGGTGGTGAG |
rho5-dn-F | AACGTCGACCCATGGCTCGAGTGGTATCCGCC- CCCTTTCT |
rho5-dn-R | CGTTAACACTAGTCAGATCCGGTTAGGGAGGC- TTCGTA |
rho5-comp-F | ATCCGTCGACCTGCAGCCACGTCGCCAACATCT- CCAT |
rho5-comp -R | ACACTAGTCAGATCTTCTAGCAGTGGTGCTCAG- CAGACAA |
Table 1 Primers for constructing single gene deletion mu-tant or complementary strains of Bbrho5
引物名称 Primer | 序列 Sequence(5'-3') |
---|---|
rho5-up-F | AAAAAGGAATTCCGTCGCCAACATCTCCATC |
rho5-up-R | AAAAACGGGATCCGTCGTCGGTGGTGGTGAG |
rho5-dn-F | AACGTCGACCCATGGCTCGAGTGGTATCCGCC- CCCTTTCT |
rho5-dn-R | CGTTAACACTAGTCAGATCCGGTTAGGGAGGC- TTCGTA |
rho5-comp-F | ATCCGTCGACCTGCAGCCACGTCGCCAACATCT- CCAT |
rho5-comp -R | ACACTAGTCAGATCTTCTAGCAGTGGTGCTCAG- CAGACAA |
Sample | Clean reads | Clean bases | Error rate/% | Q20/% | Q30/% | GC content/% |
---|---|---|---|---|---|---|
WT-1 | 54944640 | 8177521548 | 0.023 | 98.86 | 96.11 | 55.56 |
WT-2 | 54680452 | 8142825538 | 0.0233 | 98.76 | 95.82 | 55.61 |
WT-3 | 53371986 | 7953327629 | 0.0234 | 98.73 | 95.75 | 55.71 |
ΔBbrho5-1 | 50282602 | 7496483802 | 0.0233 | 98.74 | 95.81 | 56.01 |
ΔBbrho5-2 | 49584208 | 7395969389 | 0.0234 | 98.75 | 95.77 | 55.71 |
ΔBbrho5-3 | 52574486 | 7847183298 | 0.0232 | 98.82 | 96 | 55.94 |
Table 2 Quality statistics of the WT and ΔBbrho5 transcriptome data
Sample | Clean reads | Clean bases | Error rate/% | Q20/% | Q30/% | GC content/% |
---|---|---|---|---|---|---|
WT-1 | 54944640 | 8177521548 | 0.023 | 98.86 | 96.11 | 55.56 |
WT-2 | 54680452 | 8142825538 | 0.0233 | 98.76 | 95.82 | 55.61 |
WT-3 | 53371986 | 7953327629 | 0.0234 | 98.73 | 95.75 | 55.71 |
ΔBbrho5-1 | 50282602 | 7496483802 | 0.0233 | 98.74 | 95.81 | 56.01 |
ΔBbrho5-2 | 49584208 | 7395969389 | 0.0234 | 98.75 | 95.77 | 55.71 |
ΔBbrho5-3 | 52574486 | 7847183298 | 0.0232 | 98.82 | 96 | 55.94 |
Sample | Total reads | Total mapped | Multiple mapped | Uniquely mapped |
---|---|---|---|---|
WT-1 | 54944640 | 52334433(95.25%) | 242381(0.44%) | 52092052(94.81%) |
WT-2 | 54680452 | 52109660(95.3%) | 225669(0.41%) | 51883991(94.89%) |
WT-3 | 53371986 | 50353743(94.34%) | 210188(0.39%) | 50143555(93.95%) |
ΔBbrho5-1 | 50282602 | 47863412(95.19%) | 202423(0.4%) | 47660989(94.79%) |
ΔBbrho5-2 | 49584208 | 47574991(95.95%) | 239083(0.48%) | 47335908(95.47%) |
ΔBbrho5-3 | 52574486 | 50041097(95.18%) | 302786(0.58%) | 49738311(94.61%) |
Table 3 Alignment and analysis of WT andΔBbrho5 sequence
Sample | Total reads | Total mapped | Multiple mapped | Uniquely mapped |
---|---|---|---|---|
WT-1 | 54944640 | 52334433(95.25%) | 242381(0.44%) | 52092052(94.81%) |
WT-2 | 54680452 | 52109660(95.3%) | 225669(0.41%) | 51883991(94.89%) |
WT-3 | 53371986 | 50353743(94.34%) | 210188(0.39%) | 50143555(93.95%) |
ΔBbrho5-1 | 50282602 | 47863412(95.19%) | 202423(0.4%) | 47660989(94.79%) |
ΔBbrho5-2 | 49584208 | 47574991(95.95%) | 239083(0.48%) | 47335908(95.47%) |
ΔBbrho5-3 | 52574486 | 50041097(95.18%) | 302786(0.58%) | 49738311(94.61%) |
[1] |
Wang CS, Feng MG. Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests[J]. Biol Control, 2014, 68:129-135.
doi: 10.1016/j.biocontrol.2013.06.017 URL |
[2] | 田佳, 汝冰璐, 等. 一株对桃蚜有高致病性球孢白僵菌的分离、筛选与鉴定[J]. 植物保护学报, 2018, 45(3):606-613. |
Tian J, Ru BL, et al. Separation, screening and identification of one isolate of Beauveria bassiana with high pathogenicity to Myzus persicae[J]. J Plant Prot, 2018, 45(3):606-613. | |
[3] | 姚红伊, 颜小锋, 吴希美. Rac小G蛋白与中性粒细胞趋化研究进展[J]. 中国药理学通报, 2010, 26(11):1407-1409. |
Yao HY, Yan XF, Wu XM. Progress in the study between Rac GTPase and neutrophil chemotaxis[J]. Chin Pharmacol Bull, 2010, 26(11):1407-1409. | |
[4] |
Stankiewicz TR, Linseman DA. Rho family GTPases:key players in neuronal development, neuronal survival, and neurodegeneration[J]. Front Cell Neurosci, 2014, 8:314.
doi: 10.3389/fncel.2014.00314 pmid: 25339865 |
[5] |
Perez P, Cansado J. Cell integrity signaling and response to stress in fission yeast[J]. Curr Protein Pept Sci, 2010, 11(8):680-692.
doi: 10.2174/138920310794557718 URL |
[6] |
Kwon MJ, Arentshorst M, Roos ED, et al. Functional characterization of Rho GTPases in Aspergillus niger uncovers conserved and diverged roles of Rho proteins within filamentous fungi[J]. Mol Microbiol, 2011, 79(5):1151-1167.
doi: 10.1111/j.1365-2958.2010.07524.x pmid: 21205013 |
[7] |
Viana RA, Pinar M, Soto T, et al. Negative functional interaction between cell integrity MAPK pathway and Rho1 GTPase in fission yeast[J]. Genetics, 2013, 195(2):421-432.
doi: 10.1534/genetics.113.154807 pmid: 23934882 |
[8] |
An B, Li BQ, Qin GZ, et al. Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea[J]. Fungal Genet Biol, 2015, 75:46-55.
doi: 10.1016/j.fgb.2015.01.007 URL |
[9] |
Nakano K, Imai J, Arai R, et al. The small GTPase Rho3 and the diaphanous/formin For3 function in polarized cell growth in fission yeast[J]. J Cell Sci, 2002, 115(pt 23):4629-4639.
doi: 10.1242/jcs.00150 URL |
[10] |
Gong T, Liao Y, et al. Control of polarized growth by the Rho family GTPase Rho4 in budding yeast:requirement of the N-terminal extension of Rho4 and regulation by the Rho GTPase-activating protein Bem2[J]. Eukaryot Cell, 2013, 12(2):368-377.
doi: 10.1128/EC.00277-12 URL |
[11] |
Rasmussen CG, Glass NL. A Rho-type GTPase, rho-4, is required for septation in Neurospora crassa[J]. Eukaryot Cell, 2005, 4(11):1913-1925.
pmid: 16278458 |
[12] |
Si H, Justa-Schuch D, Seiler S, et al. Regulation of septum formation by the Bud3-Rho4 GTPase module in Aspergillus nidulans[J]. Genetics, 2010, 185(1):165-176.
doi: 10.1534/genetics.110.114165 URL |
[13] | Tay YD, Leda M, Goryachev AB, et al. Local and global Cdc42 guanine nucleotide exchange factors for fission yeast cell polarity are coordinated by microtubules and the Tea1-Tea4-Pom1 axis[J]. J Cell Sci, 2018, 131(14):jcs216580. |
[14] |
Mahlert M, Leveleki L, Hlubek A, et al. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis[J]. Mol Microbiol, 2006, 59(2):567-578.
doi: 10.1111/j.1365-2958.2005.04952.x URL |
[15] |
Kayano Y, Tanaka A, Akano F, et al. Differential roles of NADPH oxidases and associated regulators in polarized growth, conidiation and hyphal fusion in the symbiotic fungus Epichloë festucae[J]. Fungal Genet Biol, 2013, 56:87-97.
doi: 10.1016/j.fgb.2013.05.001 pmid: 23684536 |
[16] |
Tian H, Zhou L, Guo W, et al. Small GTPase Rac1 and its interaction partner Cla4 regulate polarized growth and pathogenicity in Verticillium dahliae[J]. Fungal Genet Biol, 2015, 74:21-31.
doi: 10.1016/j.fgb.2014.11.003 pmid: 25475370 |
[17] |
Guan Y, Wang DY, Ying SH, et al. Miro GTPase controls mitochondrial behavior affecting stress tolerance and virulence of a fungal insect pathogen[J]. Fungal Genet Biol, 2016, 93:1-9.
doi: 10.1016/j.fgb.2016.05.005 pmid: 27241960 |
[18] | 赵圣国. 组学生物技术——系统性揭示生命活动奥秘[J]. 生物技术通报, 2021, 37(1):1. |
Zhao SG. Omics biotechnology-systematically reveal the mystery of life activities[J]. Biotechnol Bull, 2021, 37(1):1. | |
[19] |
Shao W, Cai Q, Tong SM, et al. Rei1-like protein regulates nutritional metabolism and transport required for the asexual cycle in vitro and in vivo of a fungal insect pathogen[J]. Environ Microbiol, 2019, 21(8):2772-2786.
doi: 10.1111/1462-2920.14616 pmid: 30932324 |
[20] |
Peng YJ, Ding JL, Feng MG, et al. Glc8, a regulator of protein phosphatase type 1, mediates oxidation tolerance, asexual development and virulence in Beauveria bassiana, a filamentous entomopathogenic fungus[J]. Curr Genet, 2019, 65(1):283-291.
doi: 10.1007/s00294-018-0876-y URL |
[21] |
Wang DY, Tong SM, Guan Y, et al. The velvet protein VeA functions in asexual cycle, stress tolerance and transcriptional regulation of Beauveria bassiana[J]. Fungal Genet Biol, 2019, 127:1-11.
doi: 10.1016/j.fgb.2019.02.009 URL |
[22] | Zhang AX, et al. BrlA and AbaA govern virulence-required dimorphic switch, conidiation, and pathogenicity in a fungal insect pathogen[J]. mSystems, 2019, 4(4):e00140-19. |
[23] |
Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12:323.
doi: 10.1186/1471-2105-12-323 URL |
[24] |
Robinson MD, McCarthy DJ, Smyth GK. edgeR:a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1):139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[25] |
Xie C, Mao X, Huang J, et al. KOBAS 2. 0:a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Res, 2011, 39(web server issue):W316-W322.
doi: 10.1093/nar/gkr483 URL |
[26] |
Peng B, Su YB, Li H, et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria[J]. Cell Metab, 2015, 21(2):249-262.
doi: S1550-4131(15)00009-1 pmid: 25651179 |
[27] |
Liu J, Sun HH, Ying SH, et al. Characterization of three mitogen-activated protein kinase kinase-like proteins in Beauveria bas- siana[J]. Fungal Genet Biol, 2018, 113:24-31.
doi: 10.1016/j.fgb.2018.01.008 URL |
[28] |
Wang JJ, Cai Q, Qiu L, et al. The histone acetyltransferase Mst2 sustains the biological control potential of a fungal insect pathogen through transcriptional regulation[J]. Appl Microbiol Biotechnol, 2018, 102(3):1343-1355.
doi: 10.1007/s00253-017-8703-9 URL |
[29] |
Zhou G, Ying SH, Hu Y, et al. Roles of three HSF domain-containing proteins in mediating heat-shock protein genes and sustaining asexual cycle, stress tolerance, and virulence in Beauveria bassi-ana[J]. Front Microbiol, 2018, 9:1677.
doi: 10.3389/fmicb.2018.01677 URL |
[30] | Tong SM, Wang DY, Gao BJ, et al. The DUF1996 and WSC domain-containing protein Wsc1I Acts as a novel sensor of multiple stress cues in Beauveria bassiana[J]. Cell Microbiol, 2019, 21(12):e13100. |
[31] |
Heasman SJ, Ridley AJ. Mammalian Rho GTPases:new insights into their functions from in vivo studies[J]. Nat Rev Mol Cell Biol, 2008, 9(9):690-701.
doi: 10.1038/nrm2476 URL |
[32] | 孙江山, 沈源, 等. 真菌中Rho GTP酶功能多样性及其研究进展[J]. 农技服务, 2016, 33(6):96. |
Sun JS, Shen Y, et al. Functional diversity and research progress of Rho GTPases in fungi[J]. Agric Technol Serv, 2016, 33(6):96. | |
[33] |
Guan Y, Wang DY, Ying SH, et al. A novel Ras GTPase(Ras3)regulates conidiation, multi-stress tolerance and virulence by acting upstream of Hog1 signaling pathway in Beauveria bassiana[J]. Fungal Genet Biol, 2015, 82:85-94.
doi: 10.1016/j.fgb.2015.07.002 pmid: 26162967 |
[34] | 朱静, 岳思宁, 陈琛, 等. 谷氨酸合酶在灵芝中生物学功能的研究[J]. 南京农业大学学报, 2019, 42(6):1073-1079. |
Zhu J, Yue SN, Chen C, et al. Study on the biological function of glutamate synthase in Ganoderma lucidum[J]. J Nanjing Agric Univ, 2019, 42(6):1073-1079. | |
[35] | 肖洁, 刘朱东, 彭胜男, 等. GlnA基因对刺糖多孢菌生长发育及多杀菌素合成的影响[J]. 中国生物防治学报, 2018, 34(4):625-638. |
Xiao J, Liu ZD, Peng SN, et al. The effect of glnA gene on growth development and spinosad biosynjournal in Saccharopolyspora spinosa[J]. Chin J Biol Control, 2018, 34(4):625-638. |
[1] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[2] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[3] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[4] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[5] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[6] | XIE Yang, XING Yu-meng, ZHOU Guo-yan, LIU Mei-yan, YIN Shan-shan, YAN Li-ying. Transcriptome Analysis of Diploid and Autotetraploid in Cucumber Fruit [J]. Biotechnology Bulletin, 2023, 39(3): 152-162. |
[7] | HU Li-li, LIN Bo-rong, WANG Hong-hong, CHEN Jian-song, LIAO Jin-ling, ZHUO Kan. Transcriptome and Candidate Effectors Analysis of Pratylenchus brachyurus [J]. Biotechnology Bulletin, 2023, 39(3): 254-266. |
[8] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[9] | XU Jun, YE Yu-qing, NIU Ya-jing, HUANG He, ZHANG Meng-meng. Transcriptome Analysis of Rhizome Development in Chrysanthemum× × morifolium [J]. Biotechnology Bulletin, 2023, 39(10): 231-245. |
[10] | GUO Wen-bo, LU Yang, SUI Li, ZHAO Yu, ZOU Xiao-wei, ZHANG Zheng-kun, LI Qi-yun. Preparation and Application of Polyclonal Antibodies Against Beauveria bassiana Mycovirus BbPmV-4 Coat Protein [J]. Biotechnology Bulletin, 2023, 39(10): 58-67. |
[11] | LUO Hao-tian, WANG Long, WANG Yu-qian, WANG Yue, LI Jia-zhen, YANG Meng-ke, ZHANG Jie, DENG Xin, WANG Hong-yan. Genome-wide Identification and Expression Analysis of the RNAi-related Gene Families in Setaria viridis [J]. Biotechnology Bulletin, 2023, 39(1): 175-186. |
[12] | XIN Jian-pan, LI Yan, ZHAO Chu, TIAN Ru-nan. Transcriptome Sequencing in the Leaves of Pontederia cordata with Cadmium Exposure and Gene Mining in Phenypropanoid Pathways [J]. Biotechnology Bulletin, 2022, 38(6): 198-210. |
[13] | XU Jin, LI Tao, LI Chu-lin, ZHU Shun-ni, WANG Zhong-ming, XIANG Wen-zhou. Effects of Temperature on the Growth,Total Lipid and Eicosapentaenoic Acid Synthesis of Eustigmatos sp. [J]. Biotechnology Bulletin, 2022, 38(6): 261-271. |
[14] | XIONG He-li, SHA Qian, LIU Shao-na, XIANG De-cai, ZHANG Bin, ZHAO Zhi-yong. Application of Single-cell Transcriptome Sequencing in Animals [J]. Biotechnology Bulletin, 2022, 38(3): 226-233. |
[15] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||