Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (2): 237-244.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0611
Previous Articles Next Articles
JIA Hai-hong(), LI Bing-qing()
Received:
2021-05-11
Online:
2022-02-26
Published:
2022-03-09
Contact:
LI Bing-qing
E-mail:jia11112222@126.com;bingqingsdu@163.com
JIA Hai-hong, LI Bing-qing. Research Progress in the Post-translational Modification of Superoxide Dismutase[J]. Biotechnology Bulletin, 2022, 38(2): 237-244.
Fig. 1 Effect of post-translational modification on SOD activity The downward arrow shows decreased SOD activity. The arrows covered with boxes indicate that the modification occurred in the body. The horizontal arrow indicates that the enzyme activity did not change after modification
[1] |
Flohé L. Looking back at the early stages of redox biology[J]. Antioxidants, 2020, 9(12):1254.
doi: 10.3390/antiox9121254 URL |
[2] |
Hatinguais R, Pradhan A, Brown GD, et al. Mitochondrial reactive oxygen species regulate immune responses of macrophages to Aspergillus fumigatus[J]. Front Immunol, 2021, 12:641495.
doi: 10.3389/fimmu.2021.641495 pmid: 33841423 |
[3] |
Candas D, Li JJ. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx[J]. Antioxid Redox Signal, 2014, 20(10):1599-1617.
doi: 10.1089/ars.2013.5305 URL |
[4] |
Sheng Y, Abreu IA, Cabelli DE, et al. Superoxide dismutases and superoxide reductases[J]. Chem Rev, 2014, 114(7):3854-3918.
doi: 10.1021/cr4005296 URL |
[5] |
Zhao HQ, Zhang RF, Yan XY, et al. Superoxide dismutase nanozymes:an emerging star for anti-oxidation[J]. J Mater Chem B, 2021. DOI: 10. 1039/d1tb00720c.
doi: 10. 1039/d1tb00720c |
[6] |
Perry JJ, Shin DS, Getzoff ED, et al. The structural biochemistry of the superoxide dismutases[J]. Biochim Biophys Acta, 2010, 1804(2):245-262.
doi: 10.1016/j.bbapap.2009.11.004 pmid: 19914407 |
[7] |
Tak YJ, Park JH, Rhim H, et al. ALS-related mutant SOD1 aggregates interfere with mitophagy by sequestering the autophagy receptor optineurin[J]. Int J Mol Sci, 2020, 21(20):7525.
doi: 10.3390/ijms21207525 URL |
[8] |
Yan Z, Spaulding HR. Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise[J]. Redox Biol, 2020, 32:101508.
doi: 10.1016/j.redox.2020.101508 URL |
[9] |
Basak D, Uddin MN, Hancock J. The role of oxidative stress and its counteractive utility in colorectal cancer(CRC)[J]. Cancers, 2020, 12(11):3336.
doi: 10.3390/cancers12113336 URL |
[10] |
Lei Y, Wang K, Deng L, et al. Redox regulation of inflammation:old elements, a new story[J]. Med Res Rev, 2015, 35(2):306-340.
doi: 10.1002/med.21330 URL |
[11] |
Dhar SK, Tangpong J, Chaiswing L, et al. Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages[J]. Cancer Res, 2011, 71(21):6684-6695.
doi: 10.1158/0008-5472.CAN-11-1233 URL |
[12] |
Chang KY, Hsu TI, Hsu CC, et al. Specificity protein 1-modulated superoxide dismutase 2 enhances temozolomide resistance in glioblastoma, which is independent of O6-methylguanine-DNA methyltransferase[J]. Redox Biol, 2017, 13:655-664.
doi: 10.1016/j.redox.2017.08.005 URL |
[13] |
Dhar SK, Zhang J, Gal J, et al. FUsed in sarcoma is a novel regulator of manganese superoxide dismutase gene transcription[J]. Antioxid Redox Signal, 2014, 20(10):1550-1566.
doi: 10.1089/ars.2012.4984 URL |
[14] | Yamakura F, Kawasaki H. Post-translational modifications of superoxide dismutase[J]. Biochim Biophys Acta, 2010, 1804(2):318-325. |
[15] |
Xu WC, Liang JZ, Li C, et al. Pathological hydrogen peroxide triggers the fibrillization of wild-type SOD1 via sulfenic acid modification of Cys-111[J]. Cell Death Dis, 2018, 9(2):67.
doi: 10.1038/s41419-017-0106-4 URL |
[16] |
Ahmad R, Hussain A, Ahsan H. Peroxynitrite:cellular pathology and implications in autoimmunity[J]. J Immunoassay Immunochem, 2019, 40(2):123-138.
doi: 10.1080/15321819.2019.1583109 URL |
[17] | Bila I, Dzydzan O, Brodyak I, et al. Agmatine prevents oxidative-nitrative stress in blood leukocytes under streptozotocin-induced diabetes mellitus[J]. Open Life Sci, 2019, 14:299-310. |
[18] |
Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration[J]. Redox Biol, 2018, 14:618-625.
doi: S2213-2317(17)30621-3 pmid: 29154193 |
[19] |
Demicheli V, Moreno DM, Radi R. Human Mn-superoxide dismutase inactivation by peroxynitrite:a paradigm of metal-catalyzed tyrosine nitration in vitro and in vivo[J]. Metallomics, 2018, 10(5):679-695.
doi: 10.1039/c7mt00348j pmid: 29737331 |
[20] |
Smith CD, Carson M, van der Woerd M, et al. Crystal structure of peroxynitrite-modified bovine Cu, Zn superoxide dismutase[J]. Arch Biochem Biophys, 1992, 299(2):350-355.
pmid: 1444476 |
[21] | Yamakura F, Matsumoto T, Fujimura T, et al. Modification of a single tryptophan residue in human Cu, Zn-superoxide dismutase by peroxynitrite in the presence of bicarbonate[J]. Biochim et Biophys Acta BBA Protein Struct Mol Enzymol, 2001, 1548(1):38-46. |
[22] |
Yamakura F, Matsumoto T, Ikeda K, et al. Nitrated and oxidized products of a single tryptophan residue in human Cu, Zn-superoxide dismutase treated with either peroxynitrite-carbon dioxide or myeloperoxidase-hydrogen peroxide-nitrite[J]. J Biochem, 2005, 138(1):57-69.
doi: 10.1093/jb/mvi095 URL |
[23] |
Alvarez B, Demicheli V, Durán R, et al. Inactivation of human Cu, Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical[J]. Free Radic Biol Med, 2004, 37(6):813-822.
doi: 10.1016/j.freeradbiomed.2004.06.006 URL |
[24] |
Taylor DM, Gibbs BF, Kabashi E, et al. Tryptophan 32 potentiates aggregation and cytotoxicity of a copper/zinc superoxide dismutase mutant associated with familial amyotrophic lateral sclerosis[J]. J Biol Chem, 2007, 282(22):16329-16335.
pmid: 17389599 |
[25] |
MacMillan-Crow LA, Crow JP, Kerby JD, et al. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts[J]. PNAS, 1996, 93(21):11853-11858.
pmid: 8876227 |
[26] |
MacMillan-Crow LA, Crow JP, Thompson JA. Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues[J]. Biochemistry, 1998, 37(6):1613-1622.
pmid: 9484232 |
[27] |
MacMillan-Crow LA, Thompson JA. Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant(Y34F)by peroxynitrite[J]. Arch Biochem Biophys, 1999, 366(1):82-88.
pmid: 10334867 |
[28] |
Yamakura F, Taka H, Fujimura T, et al. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine[J]. J Biol Chem, 1998, 273(23):14085-14089.
doi: 10.1074/jbc.273.23.14085 pmid: 9603906 |
[29] |
Quijano C, Hernandez-Saavedra D, Castro L, et al. Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration[J]. J Biol Chem, 2001, 276(15):11631-11638.
doi: 10.1074/jbc.M009429200 pmid: 11152462 |
[30] |
Quint P, Reutzel R, Mikulski R, et al. Crystal structure of nitrated human manganese superoxide dismutase:mechanism of inactivation[J]. Free Radic Biol Med, 2006, 40(3):453-458.
doi: 10.1016/j.freeradbiomed.2005.08.045 URL |
[31] |
Neumann H, Hazen JL, Weinstein J, et al. Genetically encoding protein oxidative damage[J]. J Am Chem Soc, 2008, 130(12):4028-4033.
doi: 10.1021/ja710100d pmid: 18321101 |
[32] |
Guan Y, Hickey MJ, Borgstahl GE, et al. Crystal structure of Y34F mutant human mitochondrial manganese superoxide dismutase and the functional role of tyrosine 34[J]. Biochemistry, 1998, 37(14):4722-4730.
pmid: 9537987 |
[33] | Larrainzar E, Urarte E, Auzmendi I, et al. Use of recombinant iron-superoxide dismutase as a marker of nitrative stress[J]. Methods Enzymol, 2008, 437:605-618. |
[34] |
Martinez A, Peluffo G, Petruk AA, et al. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases(Fe-SODs)A and B:disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer[J]. J Biol Chem, 2014, 289(18):12760-12778.
doi: 10.1074/jbc.M113.545590 URL |
[35] |
Csar XF, Wilson NJ, Strike P, et al. Copper/zinc superoxide dismutase is phosphorylated and modulated specifically by granulocyte-colony stimulating factor in myeloid cells[J]. Proteomics, 2001, 1(3):435-443.
pmid: 11680888 |
[36] |
Archambaud C, Nahori MA, Pizarro-Cerda J, et al. Control of Listeria superoxide dismutase by phosphorylation[J]. J Biol Chem, 2006, 281(42):31812-31822.
doi: 10.1074/jbc.M606249200 pmid: 16905535 |
[37] |
Voisin S, Watson DC, Tessier L, et al. The cytoplasmic phosphoproteome of the Gram-negative bacterium Campylobacter jejuni:evidence for modification by unidentified protein kinases[J]. Proteomics, 2007, 7(23):4338-4348.
doi: 10.1002/(ISSN)1615-9861 URL |
[38] |
Bykova NV, Egsgaard H, Møller IM. Identification of 14 new phosphoproteins involved in important plant mitochondrial processes[J]. FEBS Lett, 2003, 540(1/2/3):141-146.
doi: 10.1016/S0014-5793(03)00250-3 URL |
[39] |
Hopper RK, Carroll S, Aponte AM, et al. Mitochondrial matrix phosphoproteome:effect of extra mitochondrial calcium[J]. Biochemistry, 2006, 45(8):2524-2536.
doi: 10.1021/bi052475e URL |
[40] |
Castellano I, Cecere F, De Vendittis A, et al. Rat mitochondrial manganese superoxide dismutase:amino acid positions involved in covalent modifications, activity, and heat stability[J]. Biopolymers, 2009, 91(12):1215-1226.
doi: 10.1002/bip.v91:12 URL |
[41] |
Rashdan NA, Shrestha B, Pattillo CB. S-glutathionylation, friend or foe in cardiovascular health and disease[J]. Redox Biol, 2020, 37:101693.
doi: 10.1016/j.redox.2020.101693 pmid: 32912836 |
[42] |
Banks CJ, Andersen JL. Mechanisms of SOD1 regulation by post-translational modifications[J]. Redox Biol, 2019, 26:101270.
doi: S2213-2317(19)30584-1 pmid: 31344643 |
[43] |
Bruijn LI. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1[J]. Science, 1998, 281(5384):1851-1854.
pmid: 9743498 |
[44] | Castellano I, Ruocco MR, Cecere F, et al. Glutathionylation of the iron superoxide dismutase from the psychrophilic Eubacterium Pseudoalteromonas haloplanktis[J]. Biochim et Biophys Acta BBA Proteins Proteom, 2008, 1784(5):816-826. |
[45] |
Anastasiou IA, Eleftheriadou I, Tentolouris A, et al. The effect of oxidative stress and antioxidant therapies on pancreatic β-cell dysfunction:results from in vitro and in vivo studies[J]. Curr Med Chem, 2021, 28(7):1328-1346.
doi: 10.2174/0929867327666200526135642 URL |
[46] | 徐玉英. 乙酰化对大肠杆菌SodB蛋白功能的影响研究[D]. 福州:福建农林大学, 2012. |
Xu YY. Effect of acetylation on the iorn-containing superoxide dismutase(SodB)of Escherichia coli[D]. Fuzhou:Fujian Agriculture and Forestry University, 2012. | |
[47] | Vidimar V, Gius D, Chakravarti D, et al. Dysfunctional MnSOD leads to redox dysregulation and activation of prosurvival AKT signaling in uterine leiomyomas[J]. Sci Adv, 2016, 2(11):e1601132. |
[48] |
Chen YH, Zhang JY, Lin Y, et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS[J]. EMBO Rep, 2011, 12(6):534-541.
doi: 10.1038/embor.2011.65 URL |
[49] | 赵作辉, 李翠玲, 王道光, 等. MnSOD乙酰化对肾透明细胞癌786-O细胞增殖、凋亡的影响[J]. 山东大学学报:医学版, 2017, 55(9):31-35. |
Zhao ZH, Li CL, Wang DG, et al. Effect of MnSOD acetylation on the proliferation and apoptosis of clear cell renal cell carcinoma cell line 786-O[J]. J Shandong Univ:Heal Sci, 2017, 55(9):31-35. | |
[50] |
Cohen TJ, Hwang AW, Restrepo CR, et al. An acetylation switch controls TDP-43 function and aggregation propensity[J]. Nat Commun, 2015, 6:5845.
doi: 10.1038/ncomms6845 pmid: 25556531 |
[51] |
Niikura T, Kita Y, Abe Y. SUMO3 modification accelerates the aggregation of ALS-linked SOD1 mutants[J]. PLoS One, 2014, 9(6):e101080.
doi: 10.1371/journal.pone.0101080 URL |
[52] | Xie GS, Zhu L, Zhang YH, et al. Sulfinylation on superoxide dismutase 1 Cys111:novel mechanism for 1-nitropyrene to promote acute reactive oxygen species generation[J]. Small Struct, 2021, 2(3):2000123. |
[53] | Li J, Dai X, He X, et al. Effect of SOD2 methylation on mitochondrial DNA4834-bp deletion mutation in marginal cells under oxidative stress[J]. Bosn J Basic Med Sci, 2020, 20(1):70-77. |
[1] | ZHAO Zhong-juan, YANG Kai, HU Jin-dong, WEI Yan-li, LI Ling, XU Wei-sheng, LI Ji-shun. Effects of Trichoderma harzianum ST02 on the Growth of Peppermint and Physicochemical Properties of Root Zone Soil Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(7): 224-235. |
[2] | YUAN Cun-xia, LI Yan-nan, ZHANG Xiao-chong, YANG Rui, LIU Jian-li, LI Jing-yu. Physiological and Biochemical Response Characteristics of Bacillus sp. ZJS3 Under As3+ Stress [J]. Biotechnology Bulletin, 2022, 38(7): 236-246. |
[3] | WANG Xiao-qin, HUANG Yin-ping, WANG Wei-qian, WU Ping, QUAN Shu. Expression and Purification of the MLL3SET Protein with a Site-directed Mutation of an Unnatural Amino Acid [J]. Biotechnology Bulletin, 2022, 38(3): 194-202. |
[4] | WU Qi-man, TIAN Shi-han, LI Yun-ye, PAN Ying-jie, ZHANG Ying. Effects of Microbial Fertilizer on Cucumis sativus L. Growth,Yield and Quality [J]. Biotechnology Bulletin, 2022, 38(1): 125-131. |
[5] | YUAN Yuan, WANG Lei, SHI Ya-wei. Research Advances in Strategies for Improving the Activity of Microbial-derived Alkaline Proteases [J]. Biotechnology Bulletin, 2021, 37(5): 231-236. |
[6] | CHEN Xiao-yu, ZHANG Jian, ZHANG Xin-ya, TANG Yu-ting, SHAO Yu-chen, LUO Zhi-dan, LU Chen. A Rapid and Accurate Method for Tth DNA Polymerase Activity Assay [J]. Biotechnology Bulletin, 2021, 37(5): 281-286. |
[7] | XIE Guo-zhen, TANG Yuan, WU Yi, HUANG Li-li, TAN Zhou-jin. Effects of Total Glycosides of Qiwei Baizhu Powder on Intestinal Microbiota and Enzyme Activities in Diarrhea Mice [J]. Biotechnology Bulletin, 2021, 37(12): 124-131. |
[8] | TAO Zhi-dong, HE Yan-hui, DENG Zi-he, SUN Lin-lin, WU Zhan-sheng. Screening of High-efficiency Cellulose-degrading Microorganism from Spent Lentinula edodes Substrate and Optimization of Its Enzyme Production [J]. Biotechnology Bulletin, 2021, 37(11): 158-165. |
[9] | TIAN Geng, GAO Wei-qiang, CHEN Xiao-bo, ZHANG Chun-xiao. Directed Mutagenesis of β-mannanase Gene from Bacillus licheniformis KD-1 for Improving Enzyme Activity and Stability [J]. Biotechnology Bulletin, 2021, 37(10): 100-109. |
[10] | WU Huan, LU Zhen-hong, HAO Xiang-yang, WANG Bin, JIAO Yuan-chen, YANG Chun-mei, CHENG Chun-zhen. Cloning and Expression Analysis of GjMnSOD Gene in Gerbera jamesonni [J]. Biotechnology Bulletin, 2021, 37(10): 17-25. |
[11] | WANG Xiang-feng, WANG Qiao, YUAN Hui-jun, WANG Li. Screening and Identification of High-yield Feruloyl Esterase Strains and Optimizing of the Enzyme Activity Assay Conditions [J]. Biotechnology Bulletin, 2020, 36(10): 135-141. |
[12] | MENG Jian-yu, JI Jin-hua, JIA Li-juan, GUO Hui-qin, TAO Yu, FENG Fu-ying. Isolation of Cold-adapted Cellulose-degrading Bacteria Using Three Different Carbon Sources and Analysis on the Degrading Ability of Consortia [J]. Biotechnology Bulletin, 2019, 35(8): 77-84. |
[13] | GENG Xiu-xiu, ZHOU Zheng-fu, LIU Ying-ying, PING Shu-zhen, WANG Jin. Cloning and Identification of Keratinase Gene from Deinococcus gobiensis I-0 [J]. Biotechnology Bulletin, 2019, 35(3): 65-70. |
[14] | CHEN Jian-jun, LIU Liang-tao, CAO Xiang-lin. Cloning,Expression and Enzyme Production of Laccase Gene lac1680 in Phanerochaete chrysosporium [J]. Biotechnology Bulletin, 2018, 34(4): 214-220. |
[15] | LIU Xiao-li, JIANG Shi-jie, XUE Dong, LIU Ying-ying, WU Xiao-li, FENG Shuai, HAN Jia-hui, WANG Yu-zhou, PING Shu-zhen, WANG Jin. Construction and Biological Characterization of Gene dlp Deletion Mutant of Deinococcus radiodurans R1 [J]. Biotechnology Bulletin, 2017, 33(2): 155-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||