Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (3): 164-172.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0446
Previous Articles Next Articles
DING Ya-qun1(), DING Ning1, XIE Shen-min1, HUANG Meng-na1, ZHANG Yu1, ZHANG Qin1,2, JIANG Li1()
Received:
2021-04-07
Online:
2022-03-26
Published:
2022-04-06
Contact:
JIANG Li
E-mail:15621568565@163.com;lijiang@cau.edu.cn
DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits[J]. Biotechnology Bulletin, 2022, 38(3): 164-172.
sgRNA名称 sgRNA name | 序列 Primer sequence(5'-3') | PAM |
---|---|---|
5S2 | GGCCATATTG GTAGGAGGTG AGG | AGG |
3S2 | GACCTACTCG GGCAGGACCC TGG | TGG |
Table 1 sgRNA sequence
sgRNA名称 sgRNA name | 序列 Primer sequence(5'-3') | PAM |
---|---|---|
5S2 | GGCCATATTG GTAGGAGGTG AGG | AGG |
3S2 | GACCTACTCG GGCAGGACCC TGG | TGG |
引物名称 Primer name | 序列 Primer sequence(5'-3') | 产物长度 Product size/bp |
---|---|---|
3025-Vps28-5S-OuttF1 | GGCTCTGCTTTCCAGGTCTCTTG | 920 |
3025-Vps28-3S-OuttR2 | GAGCAACTCACCACTGGCTGA- CTG | |
3025-Vps28-5S-intF1 | GACCACACTGCTACGTCCATCC | 521 |
3025-Vps28-5S-intR1 | GTGACAGCCACATGGTGTTTGC |
Table 2 Primer sequence
引物名称 Primer name | 序列 Primer sequence(5'-3') | 产物长度 Product size/bp |
---|---|---|
3025-Vps28-5S-OuttF1 | GGCTCTGCTTTCCAGGTCTCTTG | 920 |
3025-Vps28-3S-OuttR2 | GAGCAACTCACCACTGGCTGA- CTG | |
3025-Vps28-5S-intF1 | GACCACACTGCTACGTCCATCC | 521 |
3025-Vps28-5S-intR1 | GTGACAGCCACATGGTGTTTGC |
引物名称Primer name | 序列Primer sequence(5'-3') |
---|---|
Vps28-F1 | GCAGGATGTTCCACGGGATC |
Vps28-R1 | CTCCCGAGCATTCTTGTAGAGC |
GAPDH-F1 | GGTGCTGAGTATGTGGTGGA |
GAPDH-R1 | GGCATTGCTGACAATCTTGA |
Table 3 Sequences of qPCR primers
引物名称Primer name | 序列Primer sequence(5'-3') |
---|---|
Vps28-F1 | GCAGGATGTTCCACGGGATC |
Vps28-R1 | CTCCCGAGCATTCTTGTAGAGC |
GAPDH-F1 | GGTGCTGAGTATGTGGTGGA |
GAPDH-R1 | GGCATTGCTGACAATCTTGA |
Fig. 2 Genotype identification of F0 generation of Vps28-knockout mice B6 is negative control,which is B6 genomic DNA. N is blank control and control without template. Marker band:2 000 bp,1 000 bp,750 bp,500 bp,250 bp,and 100 bp
Fig. 4 Genotype identification of Vps28-knockout mice in F1 generation B6 is negative control,which is the genomic DNA of B6 mice. N is blank control. The band of trans2K PlusII is:8 000 bp,5 000 bp,3 000 bp,2 000 bp,1 000 bp,750 bp,500 bp,250 bp,and 100 bp
Fig. 5 mRNA and protein expresion of Vps28 in mouse spleen and mammary gland A:Spleen tissue. B:Mammary gland tissue. WT:wild type;KO:knockout. The same blelow
[1] |
Katzmann DJ, Babst M, Emr SD. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I[J]. Cell, 2001, 106(2):145-155.
pmid: 11511343 |
[2] |
Hurley JH. ESCRT complexes and the biogenesis of multivesicular bodies[J]. Curr Opin Cell Biol, 2008, 20(1):4-11.
doi: 10.1016/j.ceb.2007.12.002 pmid: 18222686 |
[3] |
Giordano F, Giordano F, Simoes S, et al. The ocular albinism type 1(OA1)GPCR is ubiquitinated and its traffic requires endosomal sorting complex responsible for transport(ESCRT)function[J]. PNAS, 2011, 108(29):11906-11911.
doi: 10.1073/pnas.1103381108 URL |
[4] |
Cox LE, Ferraiuolo L, Goodall EF, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis(ALS)[J]. PLoS One, 2010, 5(3):e9872.
doi: 10.1371/journal.pone.0009872 URL |
[5] |
Belly A, Bodon G, Blot B, et al. CHMP2B mutants linked to frontotemporal dementia impair maturation of dendritic spines[J]. J Cell Sci, 2010, 123(pt 17):2943-2954.
doi: 10.1242/jcs.068817 URL |
[6] |
Lee JA, Gao FB. Roles of ESCRT in autophagy-associated neurodegeneration[J]. Autophagy, 2008, 4(2):230-232.
doi: 10.4161/auto.5384 URL |
[7] |
Gingras MC, Kazan JM, Pause A. Role of ESCRT component HD-PTP/PTPN23 in cancer[J]. Biochem Soc Trans, 2017, 45(3):845-854.
doi: 10.1042/BST20160332 URL |
[8] |
Oh KB, Stanton MJ, West WW, et al. Tsg101 is upregulated in a subset of invasive human breast cancers and its targeted overexpression in transgenic mice reveals weak oncogenic properties for mammary cancer initiation[J]. Oncogene, 2007, 26(40):5950-5959.
pmid: 17369844 |
[9] |
Chu T, Sun J, Saksena S, et al. New component of ESCRT-I regulates endosomal sorting complex assembly[J]. J Cell Biol, 2006, 175(5):815-823.
doi: 10.1083/jcb.200608053 URL |
[10] |
Schmidt O, Teis D. The ESCRT machinery[J]. Curr Biol, 2012, 22(4):R116-R120.
doi: 10.1016/j.cub.2012.01.028 URL |
[11] |
Kostelansky MS, Schluter C, Tam YY, et al. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer[J]. Cell, 2007, 129(3):485-498.
pmid: 17442384 |
[12] |
Kostelansky MS, Sun J, Lee S, et al. Structural and functional organization of the ESCRT-I trafficking complex[J]. Cell, 2006, 125(1):113-126.
doi: 10.1016/j.cell.2006.01.049 pmid: 16615894 |
[13] |
Sevrioukov EA, Moghrabi N, Kuhn M, et al. A mutation in dVps28 reveals a link between a subunit of the endosomal sorting complex required for transport-I complex and the actin cytoskeleton in Drosophila[J]. Mol Biol Cell, 2005, 16(5):2301-2312.
pmid: 15728719 |
[14] |
Slagsvold T, Aasland R, Hirano S, et al. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain[J]. J Biol Chem, 2005, 280(20):19600-19606.
doi: 10.1074/jbc.M501510200 pmid: 15755741 |
[15] |
Jiang L, Liu J, Sun D, et al. Genome wide association studies for milk production traits in Chinese Holstein population[J]. PLoS One, 2010, 5(10):e13661.
doi: 10.1371/journal.pone.0013661 URL |
[16] |
Jiang L, Liu X, Yang J, et al. Targeted resequencing of GWAS loci reveals novel genetic variants for milk production traits[J]. BMC Genomics, 2014, 15:1105.
doi: 10.1186/1471-2164-15-1105 pmid: 25510969 |
[17] |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823.
doi: 10.1126/science.1231143 pmid: 23287718 |
[18] |
Saksena S, Sun J, Chu T, et al. ESCRTing proteins in the endocytic pathway[J]. Trends Biochem Sci, 2007, 32(12):561-573.
pmid: 17988873 |
[19] |
Ciechanover A. The ubiquitin-proteasome proteolytic pathway[J]. Cell, 1994, 79(1):13-21.
pmid: 7923371 |
[20] |
Bishop N, Horman A, Woodman P. Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein-ubiquitin conjugates[J]. J Cell Biol, 2002, 157(1):91-101.
pmid: 11916981 |
[21] |
Bishop N, Woodman P. TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes[J]. J Biol Chem, 2001, 276(15):11735-11742.
doi: 10.1074/jbc.M009863200 pmid: 11134028 |
[22] |
Liu L, Zhang Q. Identification and functional analysis of candidate gene VPS28 for milk fat in bovine mammary epithelial cells[J]. Biochem Biophys Res Commun, 2019, 510(4):606-613.
doi: 10.1016/j.bbrc.2019.01.016 URL |
[23] |
Ruland J, Sirard C, Elia A, et al. p53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101[J]. PNAS, 2001, 98(4):1859-1864.
pmid: 11172041 |
[24] |
Wagner KU, Krempler A, Qi YY, et al. Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues[J]. Mol Cell Biol, 2003, 23(1):150-162.
doi: 10.1128/MCB.23.1.150-162.2003 URL |
[25] |
Liu J, Wang Y, Cheng Y. The ESCRT-I components VPS28A and VPS28B are essential for auxin-mediated plant development[J]. Plant Journal, 2020, 104(6):1617-1634.
doi: 10.1111/tpj.v104.6 URL |
[26] | 梁新月, 张云云, 闫建设. 中性粒细胞——炎症反应中的双刃剑[J]. 自然杂志, 2019, 41(5):370-375. |
Liang XY, Zhang YY, Yan JS. Neutrophils:a double-edged sword in the inflammatory response[J]. Chin J Nat, 2019, 41(5):370-375. | |
[27] | 张宇婷, 王笑红, 李俊松, 等. 基于细胞/细胞外囊泡的药物递送系统研究进展[J]. 南京中医药大学学报, 2020, 36(5):736-745. |
Zhang YT, Wang XH, Li JS, et al. Research advances in drug delivery system based on cell or extracellular vesicles[J]. J Nanjing Univ Tradit Chin Med, 2020, 36(5):736-745. | |
[28] |
Cornet M, Gaillardin C, Richard ML. Deletions of the endocytic components VPS28 and VPS32 in Candida albicans lead to echinocandin and azole hypersensitivity[J]. Antimicrob Agents Chemother, 2006, 50(10):3492-3495.
doi: 10.1128/AAC.00391-06 URL |
[29] | Dionisio-Vicuña MN, Gutiérrez-López TY, Adame-García SR, et al. VPS28, an ESCRT-I protein, regulates mitotic spindle organization via Gβγ, EG5 and TPX2[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(7):1012-1022. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[4] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[5] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[6] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[7] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[8] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[9] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[10] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[11] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[12] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[13] | ZHONG Jing, SUN Ling-ling, ZHANG Shu, MENG Yuan, ZHI Yi-fei, TU Li-qing, XU Tian-peng, PU Li-ping, LU Yang-qing. Effect of Knocking Out the Mda5 Gene by CRISPR/Cas9 Technology on the Replication of Newcastle Disease and Infectious Bursal Virus [J]. Biotechnology Bulletin, 2022, 38(11): 90-96. |
[14] | ZONG Mei, HAN Shuo, GUO Ning, DUAN Meng-meng, LIU Fan, WANG Gui-xiang. Production of Marker-free Mutants of Brassica campestris Mediated by CRISPR/Cas9 Through Vacuum Infiltration [J]. Biotechnology Bulletin, 2022, 38(10): 159-163. |
[15] | WANG Hai-jie, WANG Cheng-ji, GUO Yang, WANG Yun, CHEN Yan-juan, LIANG Min, WANG Jue, GONG Hui, SHEN Ru-ling. Construction of Coagulation Factor 8 Gene Knockout Mouse Model Based on CRSIPR/Cas9 Technique and Verification of Phenotype [J]. Biotechnology Bulletin, 2022, 38(10): 273-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||