Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (9): 226-236.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0539
Previous Articles Next Articles
GAO Xiao-rong1(), DING Yao1, LV Jun2()
Received:
2022-05-04
Online:
2022-09-26
Published:
2022-10-11
Contact:
LV Jun
E-mail:biogaoxr@dlut.edu.cn;lv12172003@sina.com
GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress[J]. Biotechnology Bulletin, 2022, 38(9): 226-236.
菌株编号 Strain No. | 溶磷量 Phosphate solubilisation/(mg·L-1) | IAA生成量 IAA production/(mg·L-1) | 铁载体显色圈 Siderophore color circle/(D·d-1) | 铁载体活性单位 Siderophore activity unit/% |
---|---|---|---|---|
PR1 | 736.77±20.30 | 11.38±0.33 | 2.76±0.34 | 57.67±1.21 |
PR2 | 702.25±28.60 | 2.40±0.81 | 5.17±1.02 | 62.57±3.20 |
PR3 | 756.25±15.01 | 14.46±0.20 | 2.53±0.52 | 58.53±3.62 |
PR4 | 893.46±25.38 | 9.24±0.84 | 1.05±0.45 | 38.47±3.15 |
PR5 | 842.80±36.84 | 9.50±0.88 | 1.25±0.11 | 31.24±1.55 |
PR6 | 762.09±24.75 | 4.05±0.61 | 1.02±0.28 | 25.67±1.87 |
Table 1 Plant growth-promoting traits of the isolated strains
菌株编号 Strain No. | 溶磷量 Phosphate solubilisation/(mg·L-1) | IAA生成量 IAA production/(mg·L-1) | 铁载体显色圈 Siderophore color circle/(D·d-1) | 铁载体活性单位 Siderophore activity unit/% |
---|---|---|---|---|
PR1 | 736.77±20.30 | 11.38±0.33 | 2.76±0.34 | 57.67±1.21 |
PR2 | 702.25±28.60 | 2.40±0.81 | 5.17±1.02 | 62.57±3.20 |
PR3 | 756.25±15.01 | 14.46±0.20 | 2.53±0.52 | 58.53±3.62 |
PR4 | 893.46±25.38 | 9.24±0.84 | 1.05±0.45 | 38.47±3.15 |
PR5 | 842.80±36.84 | 9.50±0.88 | 1.25±0.11 | 31.24±1.55 |
PR6 | 762.09±24.75 | 4.05±0.61 | 1.02±0.28 | 25.67±1.87 |
Fig. 2 Degradation of pyrene by strain PR3 A:The degradation dynamics and the growth curve of strain PR3 of pyrene with an initial concentration of 20 mg/L. B:The degradation dynamics of pyrene at different concentration
PAHs | 初始浓度 Initial concentration/ (mg·L-1) | 降解时间 Degrading time/d | PAHs降解率 Degradation rate of PAHs/% |
---|---|---|---|
萘 Nap | 50 | 7 | 91.56±1.35 |
14 | 92.45±1.04 | ||
菲Phe | 50 | 7 | 52.39±5.78 |
14 | 84.70±1.54 | ||
苯并(a) 芘 Bap | 10 | 7 | 46.37±7.48 |
14 | 47.16±2.66 |
Table 2 Degradability of strain PR3 for other PAHs types
PAHs | 初始浓度 Initial concentration/ (mg·L-1) | 降解时间 Degrading time/d | PAHs降解率 Degradation rate of PAHs/% |
---|---|---|---|
萘 Nap | 50 | 7 | 91.56±1.35 |
14 | 92.45±1.04 | ||
菲Phe | 50 | 7 | 52.39±5.78 |
14 | 84.70±1.54 | ||
苯并(a) 芘 Bap | 10 | 7 | 46.37±7.48 |
14 | 47.16±2.66 |
Fig. 3 Effects of inoculated strain PR3 on rice growth S0:Uncontaminated soil;S1,S2,S3:initial concentration of pyrene in the contaminated soil was 9.58 mg/kg,43.80 mg/kg and 90.67 mg/kg. CP:Only planted rice in the contaminated soil;CPR:planted rice inoculated with strain PR3 via root irrigation in the contaminated soil. The same below
处理 Treatment | 地上部 Shoot | 根 Root | |||||
---|---|---|---|---|---|---|---|
鲜重Fresh weight/(mg·pot-1) | 干重Dry weight/(mg·pot-1) | 鲜重Fresh weight/(mg·pot-1) | 干重Dry weight/(mg·pot-1) | ||||
S0 | CP | 2861.76±16.80 c | 774.40±15.12 b | 1775.95±39.67 bc | 303.60±17.08 c | ||
CPR | 3536.13±103.75 ab | 860.93±20.17 a | 2456.30±162.76 a | 368.13±18.42 a | |||
S1 | CP | 3081.10±71.56 bc | 792.00±20.61 b | 1532.85±154.78 cd | 287.47±18.87 cd | ||
CPR | 3380.85±70.78 b | 871.20±21.78 a | 1894.20±60.74 b | 334.40±7.21 b | |||
S2 | CP | 2681.43±75.64 c | 630.67±17.54 c | 1611.13±154.24 c | 262.90±14.55 d | ||
CPR | 3788.40±82.44 a | 854.70±31.33 a | 2323.75±103.45 a | 373.63±9.61 a | |||
S3 | CP | 2069.10±105.98 d | 493.53±12.12 d | 1155.00±113.43 d | 255.93±16.66 d | ||
CPR | 3513.95±119.01 ab | 838.57±30.83 ab | 2113.10±49.78 a | 346.13±14.77 ab |
Table 3 Biomass of rice at 30 d after inoculation with strain PR3
处理 Treatment | 地上部 Shoot | 根 Root | |||||
---|---|---|---|---|---|---|---|
鲜重Fresh weight/(mg·pot-1) | 干重Dry weight/(mg·pot-1) | 鲜重Fresh weight/(mg·pot-1) | 干重Dry weight/(mg·pot-1) | ||||
S0 | CP | 2861.76±16.80 c | 774.40±15.12 b | 1775.95±39.67 bc | 303.60±17.08 c | ||
CPR | 3536.13±103.75 ab | 860.93±20.17 a | 2456.30±162.76 a | 368.13±18.42 a | |||
S1 | CP | 3081.10±71.56 bc | 792.00±20.61 b | 1532.85±154.78 cd | 287.47±18.87 cd | ||
CPR | 3380.85±70.78 b | 871.20±21.78 a | 1894.20±60.74 b | 334.40±7.21 b | |||
S2 | CP | 2681.43±75.64 c | 630.67±17.54 c | 1611.13±154.24 c | 262.90±14.55 d | ||
CPR | 3788.40±82.44 a | 854.70±31.33 a | 2323.75±103.45 a | 373.63±9.61 a | |||
S3 | CP | 2069.10±105.98 d | 493.53±12.12 d | 1155.00±113.43 d | 255.93±16.66 d | ||
CPR | 3513.95±119.01 ab | 838.57±30.83 ab | 2113.10±49.78 a | 346.13±14.77 ab |
Fig. 4 Effects of strain PR3 on photosynthesis and oxidative stress of rice Chlorophyll content(A),SOD activity(B),POD activity(C)and MDA content(D)under different treatments. The different lowercase letters indicate significant differences among treatments at P<0.05 levels,the same below
[1] |
Edokpayi JN, Odiyo JO, Popoola OE, et al. Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in vhembe district, South Africa[J]. Int J Environ Res Public Health, 2016, 13(4):387.
doi: 10.3390/ijerph13040387 URL |
[2] |
Helmfrid I, Ljunggren S, Nosratabadi R, et al. Exposure of metals and PAH through local foods and risk of cancer in a historically contaminated glassworks area[J]. Environ Int, 2019, 131:104985.
doi: 10.1016/j.envint.2019.104985 URL |
[3] |
Zhang P, Chen YG. Polycyclic aromatic hydrocarbons contamination in surface soil of China:a review[J]. Sci Total Environ, 2017, 605/606:1011-1020.
doi: 10.1016/j.scitotenv.2017.06.247 URL |
[4] |
Duan YH, Shen GF, Tao S, et al. Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China[J]. Chemosphere, 2015, 127:64-69.
doi: 10.1016/j.chemosphere.2014.12.075 pmid: 25655699 |
[5] |
Fedorenko AG, Chernikova N, Minkina T, et al. Effects of benzo[a]Pyrene toxicity on morphology and ultrastructure of Hordeum sativum[J]. Environ Geochem Health, 2021, 43(4):1551-1562.
doi: 10.1007/s10653-020-00647-7 URL |
[6] |
Mittler R. ROS are good[J]. Trends Plant Sci, 2017, 22(1):11-19.
doi: S1360-1385(16)30112-1 pmid: 27666517 |
[7] |
Zhan X, Yuan J, Yue L, et al. Response of uptake and translocation of phenanthrene to nitrogen form in lettuce and wheat seedlings[J]. Environ Sci Pollut Res Int, 2015, 22(8):6280-6287.
doi: 10.1007/s11356-014-3834-3 URL |
[8] | Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons:Source, environmental impact, effect on human health and remediation[J]. Egypt J Petroleum, 2016, 25(1):107-123. |
[9] | 刘娟, 凌婉婷, 盛月慧, 等. 根表功能细菌生物膜及其在土壤有机污染控制与修复中的潜在应用价值[J]. 农业环境科学学报, 2013, 32(11):2112-2117. |
Liu J, Ling WT, Sheng YH, et al. Biofilm formation of functional bacteria on root surfaces and its potential applications on organic contaminant control and soil remediation[J]. J Agro Environ Sci, 2013, 32(11):2112-2117. | |
[10] |
Pii Y, Marastoni L, Gemassmer E, et al. Phytotoxicity alleviation by bacterial species isolated from polycyclic aromatic hydrocarbons(PAHs)contaminated sites[J]. Environ Technol Innov, 2019, 13:104-112.
doi: 10.1016/j.eti.2018.11.001 URL |
[11] |
Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria(PGPRs)with multiple plant growth promoting traits in stress agriculture:action mechanisms and future prospects[J]. Ecotoxicol Environ Saf, 2018, 156:225-246.
doi: 10.1016/j.ecoenv.2018.03.013 URL |
[12] | 孙培. 根际促生菌和BPA降解菌的筛选及其对玉米幼苗促生功能的研究[D]. 天津: 天津大学, 2019. |
Sun P. Screening of rhizosphere growth promoting bacteria and BPA degrading bacteria and study on the function growth promoting growth of maize seedlings[D]. Tianjin: Tianjin University, 2019. | |
[13] | Ghosal D, Ghosh S, Dutta TK, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons(PAHs):a review[J]. Front Microbiol, 2016, 7:1369. |
[14] |
Li XZ, Peng DL, Zhang Y, et al. Klebsiella sp. PD3, a phenanthrene(PHE)-degrading strain with plant growth promoting properties enhances the PHE degradation and stress tolerance in rice plants[J]. Ecotoxicol Environ Saf, 2020, 201:110804.
doi: 10.1016/j.ecoenv.2020.110804 URL |
[15] |
Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiol Lett, 1999, 170(1):265-270.
pmid: 9919677 |
[16] |
Ribeiro CM, Cardoso EJBN. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine(Araucaria angustifolia)[J]. Microbiol Res, 2012, 167(2):69-78.
doi: 10.1016/j.micres.2011.03.003 URL |
[17] |
Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores[J]. Anal Biochem, 1987, 160(1):47-56.
pmid: 2952030 |
[18] |
Liu J, Zhang ZM, Sheng YH, et al. Phenanthrene-degrading bacteria on root surfaces:a natural defense that protects plants from phenanthrene contamination[J]. Plant Soil, 2018, 425(1/2):335-350.
doi: 10.1007/s11104-018-3575-z URL |
[19] | Rathour R, Gupta J, Tyagi B, et al. Biodegradation of Pyrene in soil microcosm by Shewanella sp. ISTPL2, a psychrophilic, alkalophilic and halophilic bacterium[J]. Bioresour Technol Rep, 2018, 4:129-136. |
[20] |
Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid[J]. Plant Physiol, 1951, 26(1):192-195.
doi: 10.1104/pp.26.1.192 pmid: 16654351 |
[21] | Sultana S, Alam S, Karim MM. Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation[J]. J Agric Food Res, 2021, 4:100150. |
[22] | 荣良燕, 姚拓, 赵桂琴, 等. 产铁载体PGPR菌筛选及其对病原菌的拮抗作用[J]. 植物保护, 2011, 37(1):59-64. |
Rong LY, Yao T, Zhao GQ, et al. Screening of siderophore-producing PGPR bacteria and their antagonism against the pathogens[J]. Plant Prot, 2011, 37(1):59-64. | |
[23] |
Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters[J]. Anal Chimica Acta, 1962, 27:31-36.
doi: 10.1016/S0003-2670(00)88444-5 URL |
[24] |
Kotoky R, Das S, Singha LP, et al. Biodegradation of Benzo(a)Pyrene by biofilm forming and plant growth promoting Acinetobacter sp. strain PDB4[J]. Environ Technol Innov, 2017, 8:256-268.
doi: 10.1016/j.eti.2017.07.007 URL |
[25] |
Lu C, Hong Y, Liu J, et al. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation[J]. Environ Pollut, 2019, 251:773-782.
doi: S0269-7491(18)35569-6 pmid: 31121542 |
[26] |
Jeffrey SW, Humphrey GF. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochem Und Physiol Der Pflanzen, 1975, 167(2):191-194.
doi: 10.1016/S0015-3796(17)30778-3 URL |
[27] |
Shao P, Wang P, Niu B, et al. Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification[J]. Int J Biol Macromol, 2018, 119:53-59.
doi: S0141-8130(18)32298-0 pmid: 30036624 |
[28] |
Gao YZ, Hu XJ, Zhou ZY, et al. Phytoavailability and mechanism of bound PAH residues in filed contaminated soils[J]. Environ Pollut, 2017, 222:465-476.
doi: S0269-7491(16)32420-4 pmid: 28063713 |
[29] |
Haller H, Jonsson A. Growing food in polluted soils:a review of risks and opportunities associated with combined phytoremediation and food production(CPFP)[J]. Chemosphere, 2020, 254:126826.
doi: 10.1016/j.chemosphere.2020.126826 URL |
[30] |
Nzila A, Ramirez CO, Musa MM, et al. Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans, PY 4 strain[J]. Int Biodeterior Biodegrad, 2018, 130:40-47.
doi: 10.1016/j.ibiod.2018.03.014 URL |
[31] |
Vaidya S, Jain K, Madamwar D. Metabolism of Pyrene through phthalic acid pathway by enriched bacterial consortium composed of Pseudomonas, Burkholderia, and Rhodococcus(PBR)[J]. 3 Biotech, 2017, 7(1):29.
doi: 10.1007/s13205-017-0598-8 pmid: 28401465 |
[32] | 张金宝, 李凤梅, 郭书海, 等. 高分子量多环芳烃降解菌筛选及在土壤电动-生物修复中应用[J]. 生态学杂志, 2020, 39(1):260-269. |
Zhang JB, Li FM, Guo SH, et al. Isolation of high molecular weight PAHs degrading bacteria and its application in the electro-bioremediation of contaminated soil[J]. Chin J Ecol, 2020, 39(1):260-269. | |
[33] |
Seo Y, Bishop PL. Influence of nonionic surfactant on attached biofilm formation and phenanthrene bioavailability during simulated surfactant enhanced bioremediation[J]. Environ Sci Technol, 2007, 41(20):7107-7113.
pmid: 17993155 |
[34] |
Chen S, Ma Z, Li SY, et al. Colonization of polycyclic aromatic hydrocarbon-degrading bacteria on roots reduces the risk of PAH contamination in vegetables[J]. Environ Int, 2019, 132:105081.
doi: 10.1016/j.envint.2019.105081 URL |
[35] |
Liu J, Liu S, Sun K, et al. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination[J]. PLoS One, 2014, 9(9):e108249.
doi: 10.1371/journal.pone.0108249 URL |
[36] |
Tian K, Bao HY, Liu XP, et al. Accumulation and distribution of PAHs in winter wheat from areas influenced by coal combustion in China[J]. Environ Sci Pollut Res Int, 2018, 25(24):23780-23790.
doi: 10.1007/s11356-018-2456-6 URL |
[37] |
Lu SJ, Teng YG, Wang JS, et al. Enhancement of Pyrene removed from contaminated soils by Bidens maximowicziana[J]. Chemosphere, 2010, 81(5):645-650.
doi: 10.1016/j.chemosphere.2010.08.022 URL |
[38] |
Yu LY, Huang HB, Wang XH, et al. Novel phosphate-solubilising bacteria isolated from sewage sludge and the mechanism of phosphate solubilisation[J]. Sci Total Environ, 2019, 658:474-484.
doi: 10.1016/j.scitotenv.2018.12.166 URL |
[39] |
Golubev SN, Muratova AY, Wittenmayer L, et al. Rhizosphere indole-3-acetic acid as a mediator in the Sorghum bicolor-phenanthrene-Sinorhizobium meliloti interactions[J]. Plant Physiol Biochem, 2011, 49(6):600-608.
doi: 10.1016/j.plaphy.2011.03.007 URL |
[40] | 龚诚君, 周昕霏, 杨昳, 等. 产IAA菌与生物炭对镍和镉复合污染土壤的修复[J]. 环境科学与技术, 2021, 44(5):140-147. |
Gong CJ, Zhou XF, Yang Y, et al. Remediation of Ni and Cd compound contaminated soil by IAA producing bacteria and biochar[J]. Environ Sci & Technol, 2021, 44(5):140-147. | |
[41] | 龙云川, 陈轩, 周少奇. 高产铁载体根际菌的筛选鉴定及硒活化特性评价[J]. 生物技术进展, 2017, 7(5):402-408. |
Long YC, Chen X, Zhou SQ. Isolation, identification and assessment on selenium biofortification of siderophore-producing rhizobacteria[J]. Curr Biotechnol, 2017, 7(5):402-408. | |
[42] |
Zhang XY, Su C, Liu XY, et al. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in Pyrene-Ni co-contaminated soils[J]. Chemosphere, 2020, 241:125027.
doi: 10.1016/j.chemosphere.2019.125027 URL |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[3] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[4] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[5] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[6] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[7] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[8] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[9] | WANG Qi, HU Zhe, FU Wei, LI Guang-zhe, HAO Lin. Regulation of Burkholderia sp. GD17 on the Drought Tolerance of Cucumber Seedlings [J]. Biotechnology Bulletin, 2023, 39(3): 163-175. |
[10] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[11] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[12] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[13] | ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 36-43. |
[14] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[15] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||