Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (1): 274-283.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0448
Previous Articles Next Articles
WANG Shuai1(), LV Hong-rui1, ZHANG Hao1, WU Zhan-wen1, XIAO Cui-hong1, SUN Dong-mei1,2()
Received:
2022-04-12
Online:
2023-01-26
Published:
2023-02-02
Contact:
SUN Dong-mei
E-mail:15846761937@163.com;sdmlzw@126.com
WANG Shuai, LV Hong-rui, ZHANG Hao, WU Zhan-wen, XIAO Cui-hong, SUN Dong-mei. Whole-Genome Sequencing Identification of Phosphate-solubilizing Bacteria PSB-R and Analysis of Its Phosphate-solubilizing Properties[J]. Biotechnology Bulletin, 2023, 39(1): 274-283.
Fig. 1 Identification results of PSB-R A: Growth results of PSB-R on inorganic phosphorus medium. B: Growth results of PSB-R on nutrient agar surface. C: Morphology of PSB-R bacteria(crystal violet staining). D: Phylogenetic tree based on 16S rRNA gene sequence
Fig. 2 Base content and mass distribution map A: Base content distribution map: the abscissa refers to the position of the reads where the base is located, and the ordinate refers to the content of each base at a certain position. B: Base mdistribution map: the abscissa refers to the position of the reads where the base is located, and the ordinate refers to the average error rate percentage at that position of the reads
项目Item | 数据Data |
---|---|
Scaffold数量 Number of Scaffold | 16 |
Contig数量 Number of Contig | 16 |
(G+C)/% | 59.75 |
基因组大小Genome size/bp | 5 061 510 |
预测基因数量 Number of genes | 4 742 |
基因总长度Total gene length/bp | 4 393 551 |
Table 1 Assembly statistics of genomes
项目Item | 数据Data |
---|---|
Scaffold数量 Number of Scaffold | 16 |
Contig数量 Number of Contig | 16 |
(G+C)/% | 59.75 |
基因组大小Genome size/bp | 5 061 510 |
预测基因数量 Number of genes | 4 742 |
基因总长度Total gene length/bp | 4 393 551 |
基因号码Gene code | 基因名称Gene name | 产物名称 Product name | 生物活性 Activity |
---|---|---|---|
PSB.R_GM000437 | gcd | PQQ依赖型葡萄糖脱氢酶 Quinoprotein glucose dehydrogenase | 葡萄糖酸合成 Gluconic acid synthesis |
PSB.R GM001125 | ppq B | PQQ合成蛋白B Cofactor PQQ biosynthesis protein B | |
PSB.R GM001126 | ppq C | PQQ合成蛋白C Cofactor PQQ biosynthesis protein C | |
PSB.R GM001127 | ppq D | PQQ合成蛋白D Cofactor PQQ biosynthesis protein D | |
PSB.R GM001128 | ppq E | PQQ合成蛋白E Cofactor PQQ biosynthesis protein E | |
PSB.R GM001129 | ppq F | PQQ合成蛋白F Cofactor PQQ biosynthesis protein F | |
PSB.R_GM000385 | ent A | 2,3-二氢-2,3-二羟基苯甲酸脱氢酶 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase | 铁载体产生 Siderophore production |
PSB.R_GM003128 | ent C | 异分支酸合成酶C Isochorismate synthase C | |
PSB.R_GM003126 | ent B | 肠杆菌素合成亚基B Enterobactin synthase subunit B | |
PSB.R_GM003127 | ent E | 肠杆菌素合成亚基E Enterobactin synthase subunit E | |
PSB.R_GM003130 | ent F | 肠杆菌素合成亚基F Enterobactin synthase subunit F | |
PSB.R_GM003129 | ent S | 肠杆菌素(铁载体)外排蛋白 Enterobactin(siderophore)exporter | |
PSB.R_GM002907 | exb B | 生物聚合物转运蛋白B Biopolymer transport protein B | |
PSB.R_GM002910 | exb D | 生物聚合物转运蛋白D Biopolymer transport protein D | |
PSB.R_GM004736 | bfr | 细菌铁蛋白 Bacterioferritin | |
PSB.R_GM000070 | ipd C | 吲哚丙酮酸脱羧酶 Indolepyruvate decarboxylase | IAA产生 IAA production |
PSB.R_GM000012 | chi | 几丁质酶 Chitinase | 几丁质酶产生 Chitinase production |
PSB.R_GM003955 | ppx | 外切聚磷酸酶 Exopolyphosphatase | 磷酸盐降解酶 Phosphate degrading enzyme |
PSB.R_GM003047 | ppa | 无机焦磷酸酶 Inorganic pyrophosphatase | |
PSB.R_GM001406 | phn X | 磷酸乙醛水解酶 Phosphonoacetaldehyde hydrolase | |
PSB.R_GM002025 | pho A | 碱性磷酸酶 Alkaline phosphatase |
Table 2 Prediction of growth-promoting genes
基因号码Gene code | 基因名称Gene name | 产物名称 Product name | 生物活性 Activity |
---|---|---|---|
PSB.R_GM000437 | gcd | PQQ依赖型葡萄糖脱氢酶 Quinoprotein glucose dehydrogenase | 葡萄糖酸合成 Gluconic acid synthesis |
PSB.R GM001125 | ppq B | PQQ合成蛋白B Cofactor PQQ biosynthesis protein B | |
PSB.R GM001126 | ppq C | PQQ合成蛋白C Cofactor PQQ biosynthesis protein C | |
PSB.R GM001127 | ppq D | PQQ合成蛋白D Cofactor PQQ biosynthesis protein D | |
PSB.R GM001128 | ppq E | PQQ合成蛋白E Cofactor PQQ biosynthesis protein E | |
PSB.R GM001129 | ppq F | PQQ合成蛋白F Cofactor PQQ biosynthesis protein F | |
PSB.R_GM000385 | ent A | 2,3-二氢-2,3-二羟基苯甲酸脱氢酶 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase | 铁载体产生 Siderophore production |
PSB.R_GM003128 | ent C | 异分支酸合成酶C Isochorismate synthase C | |
PSB.R_GM003126 | ent B | 肠杆菌素合成亚基B Enterobactin synthase subunit B | |
PSB.R_GM003127 | ent E | 肠杆菌素合成亚基E Enterobactin synthase subunit E | |
PSB.R_GM003130 | ent F | 肠杆菌素合成亚基F Enterobactin synthase subunit F | |
PSB.R_GM003129 | ent S | 肠杆菌素(铁载体)外排蛋白 Enterobactin(siderophore)exporter | |
PSB.R_GM002907 | exb B | 生物聚合物转运蛋白B Biopolymer transport protein B | |
PSB.R_GM002910 | exb D | 生物聚合物转运蛋白D Biopolymer transport protein D | |
PSB.R_GM004736 | bfr | 细菌铁蛋白 Bacterioferritin | |
PSB.R_GM000070 | ipd C | 吲哚丙酮酸脱羧酶 Indolepyruvate decarboxylase | IAA产生 IAA production |
PSB.R_GM000012 | chi | 几丁质酶 Chitinase | 几丁质酶产生 Chitinase production |
PSB.R_GM003955 | ppx | 外切聚磷酸酶 Exopolyphosphatase | 磷酸盐降解酶 Phosphate degrading enzyme |
PSB.R_GM003047 | ppa | 无机焦磷酸酶 Inorganic pyrophosphatase | |
PSB.R_GM001406 | phn X | 磷酸乙醛水解酶 Phosphonoacetaldehyde hydrolase | |
PSB.R_GM002025 | pho A | 碱性磷酸酶 Alkaline phosphatase |
[1] | 王雪郦, 张芮瑞, 周少奇, 等. 不良环境解磷微生物研究进展[J]. 河南农业科学, 2020, 49(7): 8-17. |
Wang XL, Zhang RR, Zhou SQ, et al. Research progress of phosphate-solubilizing microorganisms in bad environments[J]. J Henan Agric Sci, 2020, 49(7): 8-17. | |
[2] | 吉蓉. 土壤解磷微生物及其解磷机制综述[J]. 甘肃农业科技, 2013(8): 42-45. |
Ji R. Research summary on phosphate dissolution of phosphate solubilizing microorganisms[J]. Gansu Agric Sci Technol, 2013(8): 42-45. | |
[3] |
Schindler DW, Hecky RE, Findlay DL, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment[J]. Proc Natl Acad Sci USA, 2008, 105(32): 11254-11258.
doi: 10.1073/pnas.0805108105 pmid: 18667696 |
[4] |
Boubekri K, Soumare A, Mardad I, et al. The screening of potassium- and phosphate-solubilizing actinobacteria and the assessment of their ability to promote wheat growth parameters[J]. Microorganisms, 2021, 9(3): 470.
doi: 10.3390/microorganisms9030470 URL |
[5] | Whitelaw MA. Growth promotion of plants inoculated with phosphate-solubilizing fungi[J]. Adv Agron, 1999, 69: 99-151. |
[6] |
Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Front Microbiol, 2017, 8: 971.
doi: 10.3389/fmicb.2017.00971 pmid: 28626450 |
[7] |
Xie JG, Yan ZQ, Wang GF, et al. A bacterium isolated from soil in a Karst rocky desertification region has efficient phosphate-solubilizing and plant growth-promoting ability[J]. Front Microbiol, 2021, 11: 625450.
doi: 10.3389/fmicb.2020.625450 URL |
[8] |
Reyes I, Bernier L, Antoun H. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum[J]. Microb Ecol, 2002, 44(1): 39-48.
pmid: 12019460 |
[9] | 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1): 1-7. |
Chi JL, Hao M, Wang ZX, et al. Advances in research and application of phosphorus-solubilizing microorganism[J]. J Microbiol, 2021, 41(1): 1-7. | |
[10] |
王俊娟, 阎爱华, 王薇, 等. 铁尾矿区油松根际溶磷泛菌D2的筛选鉴定及溶磷特性[J]. 应用生态学报, 2016, 27(11): 3705-3711.
doi: 10.13287/j.1001-9332.201611.003 |
Wang JJ, Yan AH, Wang W, et al. Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing bacteria strain D2(Pantoea sp.)in rhizosphere of Pinus tabuliformis in iron tailings yard[J]. Chin J Appl Ecol, 2016, 27(11): 3705-3711. | |
[11] | 李海云, 姚拓, 张榕, 等. 红三叶根际溶磷菌株分泌有机酸与溶磷能力的相关性研究[J]. 草业学报, 2018, 27(12): 113-121. |
Li HY, Yao T, Zhang R, et al. Relationship between organic acids secreted from rhizosphere phosphate-solubilizing bacteria in Trifolium pratense and phosphate-solubilizing ability[J]. Acta Prataculturae Sin, 2018, 27(12): 113-121. | |
[12] | Zhu FL, Qu LY, Hong XG, et al. Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from daqiao saltern on the coast of Yellow Sea of China[J]. Evid Based Complementary Altern Med, 2011, 2011: 615032. |
[13] |
Ochoa-Loza FJ, Artiola JF, Maier RM. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant[J]. J Environ Qual, 2001, 30(2): 479-485.
pmid: 11285908 |
[14] |
Ludueña LM, Anzuay MS, Angelini JG, et al. Strain Serratia sp. S119: a potential biofertilizer for peanut and maize and a model bacterium to study phosphate solubilization mechanisms[J]. Appl Soil Ecol, 2018, 126: 107-112.
doi: 10.1016/j.apsoil.2017.12.024 URL |
[15] |
Ludueña LM, Anzuay MS, Angelini JG, et al. Role of bacterial pyrroloquinoline quinone in phosphate solubilizing ability and in plant growth promotion on strain Serratia sp. S119[J]. Symbiosis, 2017, 72(1): 31-43.
doi: 10.1007/s13199-016-0434-7 URL |
[16] |
Chen ML, Ma YK, Wu S, et al. Genome warehouse: a public repository housing genome-scale data[J]. Genomics Proteomics Bioinformatics, 2021, 19(4): 584-589.
doi: 10.1016/j.gpb.2021.04.001 URL |
[17] | 中华人民共和国农业部. NY/T 2421-2013植株全磷含量测定钼锑抗比色法[S]. 国家标准馆, 2013. |
Ministry of Agriculture and Rural Affairs of the People's Republic of China. NY/T 2421-2013 Determination of total phosphorus in plant. Vanadium molybdate blue colorimetric method[S]. National Library of Standards, 2013. | |
[18] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 尿素的测定方法第4部分:铁含量邻菲啰啉分光光度法: GB/T 2441.4—2010[S]. 北京: 中国标准出版社, 2011. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Determination of urea—Part 4: iron content—1, 10-Phenanthroline spectrophotometric method: GB/T 2441.4—2010[S]. Beijing: Standards Press of China, 2011. | |
[19] | 国家统计局. 第七次全国人口普查公报(第二号)[R]. 2021. |
National Bureau of Statistics. Communiqué of the Seventh National Population Census(No. 2)[R]. 2021. | |
[20] |
唐岷宸, 李文静, 宋天顺, 等. 一株高效解磷菌的筛选及其解磷效果验证[J]. 生物技术通报, 2020, 36(6): 102-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0969 |
Tang MC, Li WJ, Song TS, et al. Screening of a highly efficient phosphate-solubilizing bacterium and validation of its phosphate-solubilizing effect[J]. Biotechnol Bull, 2020, 36(6): 102-109. | |
[21] | 魏烈群. 荣成天鹅湖解磷菌的分离筛选及其对沉积物磷释放的影响[D]. 烟台: 烟台大学, 2021. |
Wei LQ. Isolation and screening of phosphate-solubilizing bacteria and the effect on phosphorus release from the sediments in Rongcheng Swan lake[D]. Yantai: Yantai University, 2021. | |
[22] | 朱德旋, 杜春梅, 董锡文, 等. 一株寒地高效解无机磷细菌的分离鉴定及拮抗作用[J]. 微生物学报, 2020, 60(8): 1672-1682. |
Zhu DX, Du CM, Dong XW, et al. Identification and antagonism activity of an inorganic phosphorus-dissolving bacterial strain isolated from cold region[J]. Acta Microbiol Sin, 2020, 60(8): 1672-1682. | |
[23] | 赵伟进, 王孝先, 杨洋, 等. 黑青稞根际促生菌筛选及其对种子萌发的影响[J]. 种子, 2018, 37(12): 1-5, 10. |
Zhao WJ, Wang XX, Yang Y, et al. Selection of rhizotrophic bacteria from rhizosphere and its effect on seed germination of black barley[J]. Seed, 2018, 37(12): 1-5, 10. | |
[24] |
Zhao JJ, Wang S, Zhu XF, et al. Isolation and characterization of nodules endophytic bacteria Pseudomonas protegens Sneb1997 and Serratia plymuthica Sneb2001 for the biological control of root-knot nematode[J]. Appl Soil Ecol, 2021, 164: 103924.
doi: 10.1016/j.apsoil.2021.103924 URL |
[25] |
陈佳兴, 秦琴, 邱树毅, 等. 磷尾矿土壤中解磷细菌的筛选及解磷能力的测定[J]. 生物技术通报, 2018, 34(6): 183-189.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1122 |
Chen JX, Qin Q, Qiu SY, et al. Isolation, identification of phosphate-solubilizing bacteria derived from phosphate tailing soil and their capacities[J]. Biotechnol Bull, 2018, 34(6): 183-189. | |
[26] | 卢琴, 罗青平, 张腾飞, 等. 灰雁黏质沙雷菌的鉴定及其耐药性分析[J]. 动物医学进展, 2019, 40(2): 130-134. |
Lu Q, Luo QP, Zhang TF, et al. Identification and drug sensitivity test of Serratia marcescens in greylag goose[J]. Prog Vet Med, 2019, 40(2): 130-134. | |
[27] | 乔志伟, 洪坚平, 谢英荷, 等. 石灰性土壤拉恩式溶磷细菌的筛选鉴定及溶磷特性[J]. 应用生态学报, 2013, 24(8): 2294-2300. |
Qiao ZW, Hong JP, Xie YH, et al. Screening, identification and phosphate-solubilizing characteristics of Rahnella sp. phosphate-solubilizing bacteria in calcareous soil[J]. Chin J Appl Ecol, 2013, 24(8): 2294-2300. |
[1] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
[2] | ZHAO Guang-xu, YANG He-tong, SHAO Xiao-bo, CUI Zhi-hao, LIU Hong-guang, ZHANG Jie. Phosphate-solubilizing Properties and Optimization of Cultivation Conditions of Penicillium rubens: A Highly Efficient Phosphate Solubilizer [J]. Biotechnology Bulletin, 2023, 39(9): 71-83. |
[3] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[4] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[5] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[6] | XU Hong-Yun, LV Jun, YU Cun. Growth Promoting of Pinus massoniana Seedlings Regulated by Rhizosphere Phosphate-solubilizing Paraburkholderia spp. [J]. Biotechnology Bulletin, 2023, 39(6): 274-285. |
[7] | ZHANG Zhi-xia, LI Tian-pei, ZENG Hong, ZHU Xi-xian, YANG Tian-xiong, MA Si-nan, HUANG Lei. Genome Sequencing and Bioinformatics Analysis of Gelidibacter sp. PG-2 [J]. Biotechnology Bulletin, 2023, 39(3): 290-300. |
[8] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[9] | ZHANG Ao-jie, LI Qing-yun, SONG Wen-hong, YAN Shao-hui, TANG Ai-xing, LIU You-yan. Whole Genome Sequencing Analysis of a Phenol-degrading Strain Alcaligenes faecalis JF101 [J]. Biotechnology Bulletin, 2023, 39(10): 292-303. |
[10] | WEN Chang, LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng, ZHOU Shun-gui. Biological Characteristics and Genome Analysis of a Novel Multidrug-resistant Shigella flexneri Phage [J]. Biotechnology Bulletin, 2022, 38(9): 127-135. |
[11] | LI Ji-hong, JING Yu-ling, MA Gui-zhen, GUO Rong-jun, LI Shi-dong. Genome Construction of Achromobacter 77 and Its Characteristics on Chemotaxis and Antibiotic Resistance [J]. Biotechnology Bulletin, 2022, 38(9): 136-146. |
[12] | SHEN Jia-jia, HOU Xiao-gai, WANG Er-qiang, WANG Fei, GUO Li-li. Organic Phosphate-solubilizing Bacteria Screening in the Rhizosphere of Paeonia ostii and Study on Their Phosphate-solubilizing Capabilities [J]. Biotechnology Bulletin, 2022, 38(6): 157-165. |
[13] | HU Shan, LIANG Wei-qu, HUANG Hao, XU Cong, LUO Hua-jian, HU Chu-wei, HUANG Xiao-yan, CHEN Shi-li. Screening,Identification and Antagonism of Phosphate-Solubilizing Bacteria from the Compost Chinese Medicinal Herbal Residues [J]. Biotechnology Bulletin, 2022, 38(3): 92-102. |
[14] | ZHANG Ze-ying, FAN Qing-feng, DENG Yun-feng, WEI Ting-zhou, ZHOU Zheng-fu, ZHOU Jian, WANG Jin, JIANG Shi-jie. Whole Genome Sequencing and Comparative Genomic Analysis of a High-yield Lipase-producing Strain WCO-9 [J]. Biotechnology Bulletin, 2022, 38(10): 216-225. |
[15] | CHEN Ti-qiang, XU Xiao-lan, SHI Lin-chun, ZHONG Li-Yi. Sequencing and Analysis of the Whole Genome of Zizhi Cultivar ‘Wuzhi No.2’(Ganoderma sp. strain Zizhi S2) [J]. Biotechnology Bulletin, 2021, 37(11): 42-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||