Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (1): 264-273.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0501
Previous Articles Next Articles
SUN Zhuo(), WANG Yan, HAN Zhong-ming(), WANG Yun-he(), ZHAO Shu-jie, YANG Li-min
Received:
2022-04-22
Online:
2023-01-26
Published:
2023-02-02
Contact:
HAN Zhong-ming,WANG Yun-he
E-mail:329575068@163.com;hanzm2008@126.com;wangyunhe2015@163.com
SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata[J]. Biotechnology Bulletin, 2023, 39(1): 264-273.
代表值 Representative value | 分级标准Grading standard | |
---|---|---|
枯萎病Fusarium wilt | 根腐病 Root rot | |
0级 | 植株健康,无枯萎症状 | 健株,无病斑 |
1 级 | 植株10%以下叶片发黄 | 全株10%以下的叶片发病 |
3 级 | 11%-25%叶片萎蔫发黄,开始下垂 | 全株11%-25%的叶片发病 |
5 级 | 26%-50%叶片枯萎发黄,开始脱落 | 全株26%-50%的叶片发病 |
7 级 | 植株茎秆瘦弱稀疏,51%-75%叶片发黄,并大量脱落 | 全株51%-75%的叶片发病 |
9 级 | 全株萎蔫发黄,整体脱落,严重枯死 | 全株76%以上的叶片发病 |
Table 1 Disease grading standard of Fusarium wilt and root rot of S. divaricata
代表值 Representative value | 分级标准Grading standard | |
---|---|---|
枯萎病Fusarium wilt | 根腐病 Root rot | |
0级 | 植株健康,无枯萎症状 | 健株,无病斑 |
1 级 | 植株10%以下叶片发黄 | 全株10%以下的叶片发病 |
3 级 | 11%-25%叶片萎蔫发黄,开始下垂 | 全株11%-25%的叶片发病 |
5 级 | 26%-50%叶片枯萎发黄,开始脱落 | 全株26%-50%的叶片发病 |
7 级 | 植株茎秆瘦弱稀疏,51%-75%叶片发黄,并大量脱落 | 全株51%-75%的叶片发病 |
9 级 | 全株萎蔫发黄,整体脱落,严重枯死 | 全株76%以上的叶片发病 |
序号No. | 尖孢镰刀菌F. oxysporum/% | 木贼镰刀菌F. equiseti/% |
---|---|---|
MR-43 | 59.63±2.22 a | 57.04±0.19 c |
MR-38 | 56.30±1.28 b | 23.89±0.19 d |
MR-34 | 32.16±1.70 c | 56.67±0.32 c |
MR-24 | 22.36±0.92 d | 61.85±0.31 a |
MR-68 | 14.49±0.78 e | 55.19±0.40 c |
MR-37 | 11.55±0.82 f | 57.78±0.26 bc |
MR-70 | 9.91±2.31 f | 60.00±0.35 ab |
Table 2 Antifungal activities of selected rhizospheric fungi against fungal pathogens of S. divaricata
序号No. | 尖孢镰刀菌F. oxysporum/% | 木贼镰刀菌F. equiseti/% |
---|---|---|
MR-43 | 59.63±2.22 a | 57.04±0.19 c |
MR-38 | 56.30±1.28 b | 23.89±0.19 d |
MR-34 | 32.16±1.70 c | 56.67±0.32 c |
MR-24 | 22.36±0.92 d | 61.85±0.31 a |
MR-68 | 14.49±0.78 e | 55.19±0.40 c |
MR-37 | 11.55±0.82 f | 57.78±0.26 bc |
MR-70 | 9.91±2.31 f | 60.00±0.35 ab |
Fig. 1 Effects of MR-43 on F. oxysporum and F. equiseti during the dual culture assay A: F. oxysporum. B: F. oxysporum with MR-43 during the dual culture. C: F. equiseti.D: F. equiseti with MR-43 during the dual culture
Fig. 2 Microscopic morphology characteristics and the colony morphology of strain MR-43 isolate A: Front of colony. B: Back of colony. C: Conidias. D and E: Conidiophores.F: Stipes. Scale bars: C-E =10 μm. F = 5 μm
不同处理 Treatment | 枯萎病Fusarium wilt | 根腐病Root rot | ||||
---|---|---|---|---|---|---|
病情指数Disease incidence | 防病效果Disease control/% | 病情指数Disease incidence | 防病效果Disease control/% | |||
A | 13.55±2.23 c | 73.21±2.36 a | 22.66±2.18 c | 63.83±2.36 a | ||
B | 16.00±3.11 bc | 68.37±3.30 ab | 23.44±2.11 c | 63.44±3.30 a | ||
C | 22.18±3.72 b | 56.15±5.35 c | 32.07±3.66 b | 49.99±3.35 b | ||
D | 19.59±2.28 bc | 61.27±4.51 b | 30.85±3.29 b | 51.89±2.70 b | ||
CK | 50.59±4.29 a | — | 64.14±2.18 a | — |
Table 3 Control effect of the MR-43 spore suspension on fungal disease of S. divaricata
不同处理 Treatment | 枯萎病Fusarium wilt | 根腐病Root rot | ||||
---|---|---|---|---|---|---|
病情指数Disease incidence | 防病效果Disease control/% | 病情指数Disease incidence | 防病效果Disease control/% | |||
A | 13.55±2.23 c | 73.21±2.36 a | 22.66±2.18 c | 63.83±2.36 a | ||
B | 16.00±3.11 bc | 68.37±3.30 ab | 23.44±2.11 c | 63.44±3.30 a | ||
C | 22.18±3.72 b | 56.15±5.35 c | 32.07±3.66 b | 49.99±3.35 b | ||
D | 19.59±2.28 bc | 61.27±4.51 b | 30.85±3.29 b | 51.89±2.70 b | ||
CK | 50.59±4.29 a | — | 64.14±2.18 a | — |
Fig. 5 Biocontrol effects of MR-43 against the root rot and Fusarium wilt disease of S. divaricata CK: Untreated control(water). A: T. harzianum. B: B. subtilis. C: Carbendazim 50% WP or Mancozeb 70% WP. D: MR-43
不同处理 Treatment | 整株长度 Plant length/cm | 根长 Root length/cm | 整株鲜重 Plant fresh weight/g | 根鲜重 Root fresh weight/g | 整株干重 Plant dry weight/g | 根干重 Root dry weight/g |
---|---|---|---|---|---|---|
A | 55.73±3.52 a | 29.44±3.42 a | 8.21±0.40 a | 3.88±0.51 a | 2.56±0.67 a | 1.32±0.30 a |
B | 51.63±3.58 b | 29.34±2.15 a | 7.66±1.62 a | 3.04±0.47 b | 2.49±0.97 a | 1.04±0.30 b |
C | 51.35±4.14 b | 28.63±2.84 a | 7.89±1.98 a | 3.10±0.39 b | 2.54±1.01 a | 1.06±0.25 b |
CK | 50.85±3.21 b | 28.11±2.03 a | 6.44±1.37 b | 2.28±0.81 c | 1.92±0.60 b | 0.85±0.18 c |
Table 4 Effects of MR-43 on the promoting growth of S. divaricata
不同处理 Treatment | 整株长度 Plant length/cm | 根长 Root length/cm | 整株鲜重 Plant fresh weight/g | 根鲜重 Root fresh weight/g | 整株干重 Plant dry weight/g | 根干重 Root dry weight/g |
---|---|---|---|---|---|---|
A | 55.73±3.52 a | 29.44±3.42 a | 8.21±0.40 a | 3.88±0.51 a | 2.56±0.67 a | 1.32±0.30 a |
B | 51.63±3.58 b | 29.34±2.15 a | 7.66±1.62 a | 3.04±0.47 b | 2.49±0.97 a | 1.04±0.30 b |
C | 51.35±4.14 b | 28.63±2.84 a | 7.89±1.98 a | 3.10±0.39 b | 2.54±1.01 a | 1.06±0.25 b |
CK | 50.85±3.21 b | 28.11±2.03 a | 6.44±1.37 b | 2.28±0.81 c | 1.92±0.60 b | 0.85±0.18 c |
[1] |
Li XP, Xu SY, Zhang JG, et al. Assembly and annotation of whole-genome sequence of Fusarium equiseti[J]. Genomics, 2021, 113(4): 2870-2876.
doi: 10.1016/j.ygeno.2021.06.019 URL |
[2] |
Michielse CB, Rep M. Pathogen profile update: Fusarium oxysporum[J]. Mol Plant Pathol, 2009, 10(3): 311-324.
doi: 10.1111/j.1364-3703.2009.00538.x pmid: 19400835 |
[3] | Sheh ML, Pu FT, Pan ZH, et al. Flora of China Illustrations. Vol. 14 Apiaceae(Umbelliferae)[M]. Beijing: Science Press, 2005. |
[4] | 曾令祥. 药用植物病虫害[M]. 贵阳: 贵州科技出版社, 2017. |
Zeng LX. Diseases and insect pests of medicinal plants[M]. Guiyang: Guizhou Science and Technology Press, 2017. | |
[5] |
Lecomte C, Alabouvette C, Edel-Hermann V, et al. Biological control of ornamental plant diseases caused by Fusarium oxysporum: a review[J]. Biol Control, 2016, 101: 17-30.
doi: 10.1016/j.biocontrol.2016.06.004 URL |
[6] |
Xi XD, Fan JL, Yang XY, et al. Evaluation of the anti-oomycete bioactivity of rhizosphere soil-borne isolates and the biocontrol of soybean root rot caused by Phytophthora sojae[J]. Biol Control, 2022, 166: 104818.
doi: 10.1016/j.biocontrol.2021.104818 URL |
[7] |
Feng HC, Fu RX, Hou XQ, et al. Chemotaxis of beneficial rhizobacteria to root exudates: the first step towards root-microbe rhizosphere interactions[J]. Int J Mol Sci, 2021, 22(13): 6655.
doi: 10.3390/ijms22136655 URL |
[8] |
付严松, 李宇聪, 徐志辉, 等. 根际促生菌调控植物根系发育的信号与分子机制研究进展[J]. 生物技术通报, 2020, 36(9): 42-48.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0997 |
Fu YS, Li YC, Xu ZH, et al. Research progressing in signals and molecular mechanisms of plant growth-promoting rhizobacteria to regulate plant root development[J]. Biotechnol Bull, 2020, 36(9): 42-48. | |
[9] | 高游慧, 郑泽慧, 张越, 等. 根际微生态防治作物土传真菌病害的机制研究进展[J]. 中国农业大学学报, 2021, 26(6): 100-113. |
Gao YH, Zheng ZH, Zhang Y, et al. Mechanism of rhizosphere micro-ecology in controlling soil-borne fungal diseases: a review[J]. J China Agric Univ, 2021, 26(6): 100-113. | |
[10] |
Kumawat KC, Razdan N, Saharan K. Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives[J]. Microbiol Res, 2022, 254: 126901.
doi: 10.1016/j.micres.2021.126901 URL |
[11] |
Philippot L, Raaijmakers JM, Lemanceau P, et al. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nat Rev Microbiol, 2013, 11(11): 789-799.
doi: 10.1038/nrmicro3109 pmid: 24056930 |
[12] |
杨茉, 高婷, 李滟璟, 等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报, 2020, 36(5): 104-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0840 |
Yang M, Gao T, Li YJ, et al. Isolation and screening of plant growth-promoting rhizobacteria in pepper and their disease-resistant growth-promoting characteristics[J]. Biotechnol Bull, 2020, 36(5): 104-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0840 |
|
[13] |
Khalil MMR, Fierro-Coronado RA, Peñuelas-Rubio O, et al. Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato[J]. Saudi J Biol Sci, 2021, 28(12): 7460-7471.
doi: 10.1016/j.sjbs.2021.08.043 URL |
[14] |
de Azevedo Silva F, de Oliveira Vieira V, Correia da Silva R, et al. Introduction of Trichoderma spp. biocontrol strains against Sclerotinia sclerotiorum(Lib.)de Bary change soil microbial community composition in common bean(Phaseolus vulgaris L.)cultivation[J]. Biol Control, 2021, 163: 104755.
doi: 10.1016/j.biocontrol.2021.104755 URL |
[15] |
Samaras A, Karaoglanidis GS, Tzelepis G. Insights into the multitrophic interactions between the biocontrol agent Bacillus subtilis MBI 600, the pathogen Botrytis cinerea and their plant host[J]. Microbiol Res, 2021, 248: 126752.
doi: 10.1016/j.micres.2021.126752 URL |
[16] |
Asad SA. Mechanisms of action and biocontrol potential of Trich-oderma against fungal plant diseases - A review[J]. Ecol Complex, 2022, 49: 100978.
doi: 10.1016/j.ecocom.2021.100978 URL |
[17] | Malloch D. Moulds: their isolation, cultivation and identification[M]. Toronto: University of Toronto Press, 1982. |
[18] | Costa D, Tavares RM, Baptista P, et al. Cork oak endophytic fungi as potential biocontrol agents against Biscogniauxia mediterranea and Diplodia corticola[J]. J Fungi(Basel), 2020, 6(4): 287. |
[19] |
Bell D, Wells HD, Markham C. In vitro antagonism of Trichoderma species against six fungal plant pathogens[J]. Phytopathology, 1982, 72: 379-382.
doi: 10.1094/Phyto-72-379 URL |
[20] | Domsch KH, Gams W, Anderson TH. Compendium of soil fungi(Second edition)[M]. Eching: IHW-verlag, 2007. |
[21] | 杨蕾, 周国英, 梁军, 等. 防治杨树溃疡病内生菌的分离筛选及鉴定[J]. 植物保护学报, 2014, 41(4): 438-446. |
Yang L, Zhou GY, Liang J, et al. Isolation, screening and identification of the endogenous microorganisms antagonizing poplar canker[J]. J Plant Prot, 2014, 41(4): 438-446. | |
[22] |
Liu QL, Chen SF. Two novel species of Calonectria isolated from soil in a natural forest in China[J]. MycoKeys, 2017, 26: 25-60.
doi: 10.3897/mycokeys.26.14688 URL |
[23] |
Gholami M, Amini J, Abdollahzadeh J, et al. Basidiomycetes fungi as biocontrol agents against take-all disease of wheat[J]. Biol Control, 2019, 130: 34-43.
doi: 10.1016/j.biocontrol.2018.12.012 URL |
[24] |
Jarvis BB. Stachybotrys chartarum: a fungus for our time[J]. Phytochemistry, 2003, 64(1): 53-60.
pmid: 12946405 |
[25] | Hintikka EL. The role of Stachybotrys in the phenomenon known as sick building syndrome[J]. Adv Appl Microbiol, 2004, 55: 155-173. |
[26] |
Terr AI. Stachybotrys: relevance to human disease[J]. Ann Allergy Asthma Immunol, 2001, 87(6 Suppl 3): 57-63.
doi: 10.1016/S1081-1206(10)62343-5 URL |
[27] |
Tweddell RJ, Jabaji-Hare SH, Charest PM. Production of chitinases and beta-1, 3-glucanases by Stachybotrys elegans, a mycoparasite of Rhizoctonia solani[J]. Appl Environ Microbiol, 1994, 60(2): 489-495.
doi: 10.1128/aem.60.2.489-495.1994 URL |
[28] | 翟妮平, 李光宇, 徐超, 等. 河南山坡土壤中三种葡萄穗霉科真菌鉴定[J]. 土壤通报, 2019, 50(4): 878-884. |
Zhai NP, Li GY, Xu C, et al. Identification of three species of Stachybotryaceae in the soil of mountain slope in Henan[J]. Chin J Soil Sci, 2019, 50(4): 878-884. | |
[29] | Tennakoon DS, Kuo CH, Maharachchikumbura SSN, et al. Taxonomic and phylogenetic contributions to Celtis Formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi[J]. Fungal Divers, 2021, 108(1): 1-215. |
[30] |
Lombard L, Houbraken J, Decock C, et al. Generic hyper-diversity in Stachybotriaceae[J]. Persoonia, 2016, 36: 156-246.
doi: 10.3767/003158516X691582 pmid: 27616791 |
[31] | 张晓锋. 冀豫鄂湘地区土壤中虫生真菌资源调查与活性研究[D]. 广州: 华南农业大学, 2019. |
Zhang XF. Isolation, identification and bioactivity of entomogenous fungi in soils of Hunan, Hubei, Henan and Hebei provinces, China[D]. Guangzhou: South China Agricultural University, 2019. | |
[32] |
Kepler RM, Maul JE, Rehner SA. Managing the plant microbiome for biocontrol fungi: examples from Hypocreales[J]. Curr Opin Microbiol, 2017, 37: 48-53.
doi: S1369-5274(16)30159-X pmid: 28441534 |
[33] |
Xian HQ, Liu L, Li YH, et al. Molecular tagging of biocontrol fungus Trichoderma asperellum and its colonization in soil[J]. J Appl Microbiol, 2020, 128(1): 255-264.
doi: 10.1111/jam.14457 pmid: 31541488 |
[34] | 李兴龙, 李彦忠. 土传病害生物防治研究进展[J]. 草业学报, 2015, 24(3): 204-212. |
Li XL, Li YZ. Research advances in biological control of soil-borne disease[J]. Acta Prataculturae Sin, 2015, 24(3): 204-212. | |
[35] | 蒋志强, 郭坚华. 生防菌对土壤微生态影响的风险评估[J]. 微生物学杂志, 2006, 26(1): 85-88. |
Jiang ZQ, Guo JH. Hazard analysis of the impact of bio-controlling microbes on soil micro-ecosystem[J]. J Microbiol, 2006, 26(1): 85-88. | |
[36] | 马超, 龚鑫, 郜红建, 等. 历史因素对土壤微生物群落与外来细菌入侵间关系的影响[J]. 生态学报, 2018, 38(22): 7933-7941. |
Ma C, Gong X, Gao HJ, et al. Legacy impacts on the relationships between soil microbial community and the invasion potential of non-indigenous bacteria[J]. Acta Ecol Sin, 2018, 38(22): 7933-7941. |
[1] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
[2] | ZHAO Guang-xu, YANG He-tong, SHAO Xiao-bo, CUI Zhi-hao, LIU Hong-guang, ZHANG Jie. Phosphate-solubilizing Properties and Optimization of Cultivation Conditions of Penicillium rubens: A Highly Efficient Phosphate Solubilizer [J]. Biotechnology Bulletin, 2023, 39(9): 71-83. |
[3] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[4] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[5] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[6] | XU Hong-Yun, LV Jun, YU Cun. Growth Promoting of Pinus massoniana Seedlings Regulated by Rhizosphere Phosphate-solubilizing Paraburkholderia spp. [J]. Biotechnology Bulletin, 2023, 39(6): 274-285. |
[7] | REN Pei-dong, PENG Jian-ling, LIU Sheng-hang, YAO Zi-ting, ZHU Gui-ning, LU Guang-tao, LI Rui-fang. Isolation and Identification of a Bacillus safensis Strain GX-H6 and Its Biocontrol Effect on Bacterial Leaf Streak of Rice [J]. Biotechnology Bulletin, 2023, 39(5): 243-253. |
[8] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[9] | YANG Dong-ya, QI Rui-xue LI, Zhao-xuan , LIN Wei, MA Hui, ZHANG Xue-yan. Screening, Identification and Growth-promoting Effect of Antagonistic Bacillus spp. Against Cucumber Fusarium solani [J]. Biotechnology Bulletin, 2023, 39(2): 211-220. |
[10] | ZOU Lan, WANG Qian, LI Mu-yi, YE Kun-hao, HUANG Jing. Identification, Biocontrol and Plant Growth-promoting Potential of Endophytic Bacterial Strain JY-3-1R from Aconitum carmichaelii Debx. [J]. Biotechnology Bulletin, 2023, 39(10): 246-255. |
[11] | LI Ji-hong, JING Yu-ling, MA Gui-zhen, GUO Rong-jun, LI Shi-dong. Genome Construction of Achromobacter 77 and Its Characteristics on Chemotaxis and Antibiotic Resistance [J]. Biotechnology Bulletin, 2022, 38(9): 136-146. |
[12] | ZHAO Zeng-qiang, GUO Wen-ting, ZHANG Xi, LI Xiao-ling, ZHANG Wei. Cloning and Functional Analysis of GhERF5-4D Gene Related to Fusarium oxysporum Resistance in Cotton [J]. Biotechnology Bulletin, 2022, 38(4): 193-201. |
[13] | YAN Cong-wen, SU Dai-fa, DAI Qing-zhong, ZHANG Zhen-rong, TIAN Yun-xia, DONG Qiong-e, ZHOU Wen-xing, CHEN Shan-yan, TONG Jiang-yun, CUI Xiao-long. Advances in Biological Control of Strawberry Diseases [J]. Biotechnology Bulletin, 2022, 38(12): 73-87. |
[14] | ZHANG Jie, XIA Ming-cong, ZHU Wen-qian, LIANG Juan, SUN Run-hong, XU Wen, WU Chao, YANG Li-rong. Screening of Bacillus sp. Against Vegetable Root-knot Nematode and Study on Its Biocontrol Mechanism [J]. Biotechnology Bulletin, 2021, 37(7): 175-182. |
[15] | ZHANG Ya-jing, SONG Mei-yan, ZHANG Yi-jing, FANG Qing, YANG Jun, PENG De-liang, HUANG Wen-kun, PENG Huan, ZHU Ying-bo, KONG Ling-an. Identification of Purpureocillium lilacinum and Trichoderma harzianum Strains for Simultaneously Controlling Cucumber Root Rot and Root-knot Nematode Diseases [J]. Biotechnology Bulletin, 2021, 37(2): 40-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||