Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (2): 1-9.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0247
YU Shi-xia1,2,3(), JIANG Yu-tong1, LIN Wen-hui1,2()
Received:
2022-03-01
Online:
2023-02-26
Published:
2023-03-07
YU Shi-xia, JIANG Yu-tong, LIN Wen-hui. Research Progress in Signals and Molecular Mechanisms of Ovule Primordia Initiation[J]. Biotechnology Bulletin, 2023, 39(2): 1-9.
[1] | Willis K. State of the world’s plants report[R]. Kew: Royal Botanic Gardens, 2017. |
[2] | Yu SX, Zhou LW, Hu LQ, et al. Asynchrony of ovule primordia initiation in Arabidopsis[J]. Development, 2020, 147(24): dev196618. |
[3] |
Smyth DR, Bowman JL, Meyerowitz EM. Early flower development in Arabidopsis[J]. Plant Cell, 1990, 2(8): 755-767.
doi: 10.1105/tpc.2.8.755 pmid: 2152125 |
[4] |
Sessions R. Arabidopsis(Brassicaceae)flower development and gynoecium patterning in wild type and Ettin mutants[J]. Am J Bot, 1997, 84(9): 1179.
pmid: 21708672 |
[5] |
Cucinotta M, Colombo L, Roig-Villanova I. Ovule development, a new model for lateral organ formation[J]. Front Plant Sci, 2014, 5: 117.
doi: 10.3389/fpls.2014.00117 pmid: 24723934 |
[6] |
Elliott RC, Betzner AS, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth[J]. Plant Cell, 1996, 8(2): 155-168.
doi: 10.1105/tpc.8.2.155 pmid: 8742707 |
[7] |
Krizek B. AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning[J]. Plant Physiol, 2009, 150(4): 1916-1929.
doi: 10.1104/pp.109.141119 pmid: 19542297 |
[8] |
Liu Z, Franks RG, Klink VP. Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA[J]. Plant Cell, 2000, 12(10): 1879-1892.
pmid: 11041883 |
[9] |
Azhakanandam S, Nole-Wilson S, Bao F, et al. SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development[J]. Plant Physiol, 2008, 146(3): 1165-1181.
doi: 10.1104/pp.107.114751 pmid: 18184731 |
[10] | Wynn AN, Seaman AA, Jones AL, et al. Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development[J]. Front Plant Sci, 2014, 5: 130. |
[11] |
Nole-Wilson S, Azhakanandam S, Franks RG. Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development[J]. Dev Biol, 2010, 346(2): 181-195.
doi: 10.1016/j.ydbio.2010.07.016 pmid: 20654611 |
[12] |
Pinyopich A, Ditta GS, Savidge B, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development[J]. Nature, 2003, 424(6944): 85-88.
doi: 10.1038/nature01741 URL |
[13] |
Schneitz K, Baker SC, Gasser CS, et al. Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana[J]. Development, 1998, 125(14): 2555-2563.
doi: 10.1242/dev.125.14.2555 pmid: 9636071 |
[14] |
Broadhvest J, Baker SC, Gasser CS. SHORT INTEGUMENTS 2 promotes growth during Arabidopsis reproductive development[J]. Genetics, 2000, 155(2): 899-907.
doi: 10.1093/genetics/155.2.899 pmid: 10835408 |
[15] | Carlson JB, Lersten NR. Reproductive morphology[M]//Shibles RM, Harper JE, Wilson RF, et al. Soybeans: Improvement, Production, and Uses. 3rd ed. Madison: ASA, CSSA, and SSSA, 2004: 59-95. |
[16] |
Brukhin V, Hernould M, Gonzalez N, et al. Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry[J]. Sex Plant Reprod, 2003, 15(6): 311-320.
doi: 10.1007/s00497-003-0167-7 URL |
[17] |
Guo XM, Yu YY, Bai L, et al. Dianthus chinensis L.: the structural difference between vascular bundles in the placenta and ovary wall suggests their different origin[J]. Front Plant Sci, 2017, 8: 1986.
doi: 10.3389/fpls.2017.01986 URL |
[18] |
Buell KM. Developmental morphology in Dianthus. i. structure of the pistil and seed development[J]. Am J Bot, 1952, 39(3): 194-210.
doi: 10.1002/j.1537-2197.1952.tb14264.x URL |
[19] |
Itoh JI, Nonomura KI, Ikeda K, et al. Rice plant development: from zygote to spikelet[J]. Plant Cell Physiol, 2005, 46(1): 23-47.
doi: 10.1093/pcp/pci501 URL |
[20] |
Lopez-Dee ZP, Wittich P, Enrico Pè M, et al. OsMADS13, a novel rice MADS-box gene expressed during ovule development[J]. Dev Genet, 1999, 25(3): 237-244.
doi: 10.1002/(SICI)1520-6408(1999)25:3<237::AID-DVG6>3.0.CO;2-L pmid: 10528264 |
[21] |
Sato Y, Hong SK, Tagiri A, et al. A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis[J]. Proc Natl Acad Sci USA, 1996, 93(15): 8117-8122.
pmid: 8755613 |
[22] |
Dreni L, Jacchia S, Fornara F, et al. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice[J]. Plant J, 2007, 52(4): 690-699.
doi: 10.1111/j.1365-313X.2007.03272.x URL |
[23] |
Zhang JR, Tang W, Huang YL, et al. Down-regulation of a LBD-like gene, OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice[J]. J Exp Bot, 2015, 66(1): 99-112.
doi: 10.1093/jxb/eru396 URL |
[24] |
Cucinotta M, di Marzo M, Guazzotti A, et al. Gynoecium size and ovule number are interconnected traits that impact seed yield[J]. J Exp Bot, 2020, 71(9): 2479-2489.
doi: 10.1093/jxb/eraa050 pmid: 32067041 |
[25] |
Qadir M, Wang XF, Shah SRU, et al. Molecular network for regulation of ovule number in plants[J]. Int J Mol Sci, 2021, 22(23): 12965.
doi: 10.3390/ijms222312965 URL |
[26] |
Zhao Y, Christensen SK, Fankhauser C, et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis[J]. Science, 2001, 291(5502): 306-309.
doi: 10.1126/science.291.5502.306 pmid: 11209081 |
[27] |
Cheng YF, Dai XH, Zhao YD. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis[J]. Genes Dev, 2006, 20(13): 1790-1799.
doi: 10.1101/gad.1415106 URL |
[28] |
Okada K, Ueda J, Komaki MK, et al. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation[J]. Plant Cell, 1991, 3(7): 677-684.
doi: 10.2307/3869249 URL |
[29] |
Bencivenga S, Simonini S, Benková E, et al. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis[J]. Plant Cell, 2012, 24(7): 2886-2897.
doi: 10.1105/tpc.112.100164 URL |
[30] |
Nemhauser JL, Feldman LJ, Zambryski PC. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis[J]. Development, 2000, 127(18): 3877-3888.
doi: 10.1242/dev.127.18.3877 pmid: 10952886 |
[31] |
Larsson E, Roberts CJ, Claes AR, et al. Polar auxin transport is essential for medial versus lateral tissue specification and vascular-mediated valve outgrowth in Arabidopsis gynoecia[J]. Plant Physiol, 2014, 166(4): 1998-2012.
doi: 10.1104/pp.114.245951 pmid: 25332506 |
[32] |
Hardtke CS, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development[J]. EMBO J, 1998, 17(5): 1405-1411.
doi: 10.1093/emboj/17.5.1405 pmid: 9482737 |
[33] |
Galbiati F, Sinha Roy D, Simonini S, et al. An integrative model of the control of ovule primordia formation[J]. Plant J, 2013, 76(3): 446-455.
doi: 10.1111/tpj.12309 URL |
[34] |
Ashikari M, Sakakibara H, Lin SY, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745.
doi: 10.1126/science.1113373 pmid: 15976269 |
[35] |
Bartrina I, Otto E, Strnad M, et al. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(1): 69-80.
doi: 10.1105/tpc.110.079079 URL |
[36] |
Higuchi M, Pischke MS, Mähönen AP, et al. In planta functions of the Arabidopsis cytokinin receptor family[J]. Proc Natl Acad Sci USA, 2004, 101(23): 8821-8826.
doi: 10.1073/pnas.0402887101 URL |
[37] |
Schwarz I, Scheirlinck MT, Otto E, et al. Cytokinin regulates the activity of the inflorescence meristem and components of seed yield in oilseed rape[J]. J Exp Bot, 2020, 71(22): 7146-7159.
doi: 10.1093/jxb/eraa419 pmid: 32911544 |
[38] |
Yokoyama A, Yamashino T, Amano YI, et al. Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana[J]. Plant Cell Physiol, 2007, 48(1): 84-96.
pmid: 17132632 |
[39] | Reyes-Olalde JI, Zúñiga-Mayo VM, Serwatowska J, et al. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium[J]. PLoS Genet, 2017, 13(4): e1006726. |
[40] |
Zu SH, Jiang YT, Chang JH, et al. Interaction of brassinosteroid and cytokinin promotes ovule initiation and increases seed number per silique in Arabidopsis[J]. J Integr Plant Biol, 2022, 64(3): 702-716.
doi: 10.1111/jipb.13197 URL |
[41] |
Cucinotta M, Manrique S, Guazzotti A, et al. Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development[J]. Development, 2016, 143(23): 4419-4424.
pmid: 27737904 |
[42] |
Rashotte AM, Mason MG, Hutchison CE, et al. A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway[J]. Proc Natl Acad Sci USA, 2006, 103(29): 11081-11085.
pmid: 16832061 |
[43] |
Huang HY, Jiang WB, Hu YW, et al. BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1[J]. Mol Plant, 2013, 6(2): 456-469.
doi: 10.1093/mp/sss070 URL |
[44] | 李不凡, 姜雨彤, 张禹, 等. 甘蓝型油菜的BR响应及BnBZL2基因的功能分析[J]. 植物科学学报, 2018, 36(6): 824-834. |
Li BF, Jiang YT, Zhang Y, et al. Brassinosteroid response of Brassica napus and functional characterization of BnBZL2[J]. Plant Sci J, 2018, 36(6): 824-834. | |
[45] |
Sun TP. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development[J]. Plant Physiol, 2010, 154(2): 567-570.
doi: 10.1104/pp.110.161554 URL |
[46] | Gomez MD, Barro-Trastoy D, Escoms E, et al. Gibberellins negatively modulate ovule number in plants[J]. Development, 2018, 145(13): dev163865. |
[47] |
Gómez MD, Fuster-Almunia C, Ocaña-Cuesta J, et al. RGL2 controls flower development, ovule number and fertility in Arabidopsis[J]. Plant Sci, 2019, 281: 82-92.
doi: 10.1016/j.plantsci.2019.01.014 URL |
[48] |
Barro-Trastoy D, Carrera E, Baños J, et al. Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms[J]. Plant J, 2020, 102(5): 1026-1041.
doi: 10.1111/tpj.14684 URL |
[49] |
Hu DZ, Li X, Yang ZY, et al. Downregulation of a gibberellin 3β-hydroxylase enhances photosynthesis and increases seed yield in soybean[J]. New Phytol, 2022, 235(2): 502-517.
doi: 10.1111/nph.18153 URL |
[50] |
Osnato M, Lacchini E, Pilatone A, et al. Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules[J]. J Exp Bot, 2021, 72(2): 398-414.
doi: 10.1093/jxb/eraa460 pmid: 33035313 |
[51] |
Ishida T, Aida M, Takada S, et al. Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana[J]. Plant Cell Physiol, 2000, 41(1): 60-67.
pmid: 10750709 |
[52] |
Takada S, Hibara K, Ishida T, et al. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation[J]. Development, 2001, 128(7): 1127-1135.
doi: 10.1242/dev.128.7.1127 pmid: 11245578 |
[53] |
Kamiuchi Y, Yamamoto K, Furutani M, et al. The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development[J]. Front Plant Sci, 2014, 5: 165.
doi: 10.3389/fpls.2014.00165 pmid: 24817871 |
[54] |
Hou BK, Lim EK, Higgins GS, et al. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana[J]. J Biol Chem, 2004, 279(46): 47822-47832.
doi: 10.1074/jbc.M409569200 URL |
[55] |
Cucinotta M, Manrique S, Cuesta C, et al. CUP-SHAPED COTYLEDON1(CUC1)and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis[J]. J Exp Bot, 2018, 69(21): 5169-5176.
doi: 10.1093/jxb/ery281 pmid: 30312436 |
[56] |
Lee DK, Geisler M, Springer PS. LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2 function in lateral organ separation and axillary meristem formation in Arabidopsis[J]. Development, 2009, 136(14): 2423-2432.
doi: 10.1242/dev.031971 URL |
[57] | Gomez MD, Urbez C, Perez-Amador MA, et al. Characterization of constricted fruit(ctf)mutant uncovers a role for AtMYB117/LOF1 in ovule and fruit development in Arabidopsis thaliana[J]. PLoS One, 2011, 6(4): e18760. |
[58] |
Tameshige T, Okamoto S, Lee JS, et al. A secreted peptide and its receptors shape the auxin response pattern and leaf margin morphogenesis[J]. Curr Biol, 2016, 26(18): 2478-2485.
doi: S0960-9822(16)30765-5 pmid: 27593376 |
[59] |
Kawamoto N, del Carpio DP, Hofmann A, et al. A peptide pair coordinates regular ovule initiation patterns with seed number and fruit size[J]. Curr Biol, 2020, 30(22): 4352-4361.e4.
doi: 10.1016/j.cub.2020.08.050 URL |
[60] | Hu LQ, Chang JH, Yu SX, et al. PIN3 positively regulates the late initiation of ovule primordia in Arabidopsis thaliana[J]. PLoS Genet, 2022, 18(3): e1010077. |
[61] |
Heisler MG, Ohno C, Das P, et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem[J]. Curr Biol, 2005, 15(21): 1899-1911.
doi: 10.1016/j.cub.2005.09.052 pmid: 16271866 |
[62] |
Ikeda K, Sunohara H, Nagato Y. Developmental course of inflorescence and spikelet in rice[J]. Breed Sci, 2004, 54(2): 147-156.
doi: 10.1270/jsbbs.54.147 URL |
[63] |
Wu CY, Trieu A, Radhakrishnan P, et al. Brassinosteroids regulate grain filling in rice[J]. Plant Cell, 2008, 20(8): 2130-2145.
doi: 10.1105/tpc.107.055087 URL |
[1] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[2] | HUANG Wen-kun, YU Jing-wen, JIA Jian-ping, PENG De-liang. Effects of Plant Hormones on the Establishment and Development of Plant Parasitic Nematodes’ Feeding Sites [J]. Biotechnology Bulletin, 2021, 37(7): 56-64. |
[3] | WANG Dan, LI Sheng-yan, LIU Jin-ping, LANG Zhi-hong. Study on the Function of Terpene Synthase Gene tps2 and Its Promoter Functional Segment in Zea mays [J]. Biotechnology Bulletin, 2020, 36(12): 1-11. |
[4] | SHI Jia YANG Dan-dan GE Hui-wen DU Jing-yao LIANG Wei-hong. cDNA Cloning and Transcriptional Expression Analysis of OsMPK15 in Rice [J]. Biotechnology Bulletin, 2018, 34(6): 66-72. |
[5] | YAN Xin-tian HUANG Jun-jun LOU Chen GE Hui-wen LIANG Wei-hong. Sequence Characterization and Expression Analysis of OsRhoGAP1 Gene in Rice [J]. Biotechnology Bulletin, 2017, 33(5): 94-101. |
[6] | WU Jian-ming CHEN Rong-fa HUANG Xing QIU Li-hang LI Yang-rui. Studies on the Gene of Key Component GA20-oxidase for Gibberellin Biosynthesis in Plant [J]. Biotechnology Bulletin, 2016, 32(7): 1-12. |
[7] | Li Qiang, Wu Jianming, Liang He, Huang Xing, Qiu Lihang. Gibberellins Biosynthesis and Signaling Transduction Pathway in Higher Plant [J]. Biotechnology Bulletin, 2014, 0(10): 16-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||