Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (2): 172-182.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0945
Previous Articles Next Articles
DU Qing-jie1(), ZHOU Lu-yao1, YANG Si-zhen1, ZHANG Jia-xin2, CHEN Chun-lin1, LI Juan-qi1, LI Meng1, ZHAO Shi-wen1, XIAO Huai-juan1(), WANG Ji-qing1()
Received:
2022-07-31
Online:
2023-02-26
Published:
2023-03-07
DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco[J]. Biotechnology Bulletin, 2023, 39(2): 172-182.
引物Primer | 序列Sequence(5'-3') | 用途Purpose |
---|---|---|
GUS-F | TAGATCTGACTAGTTTACGTCCTGT | 构建载体检测 |
GUS-R | TAGTCTGCCAGTTCAGTTCGT | |
CaMV35S-F | AAGACTGGCGAACAGTTCAT | 载体构建 |
CaMV35S-R | ATAGTGGGATTGTGCGTCAT | |
1381-P1F | CCGGAATTCGCGAAGGTAGTATAATTTAAAAC | 克隆启动子片段 |
1381-P2F | CCGGAATTCTGAATGAAATGATTTGTATTTTG | |
1381-P3F | CCGGAATTCTATGAAATGATCTAATATAATTG | |
1381-P4F | CCGGAATTCATAGAAATCATTAAGATTTTCCG | |
1381-P1R | CGCGTCGACTATAGAACAACTATATAGTATTATG | |
2307-CaCP1-F | TCTAGAATATAGTTGTTCTATAATGGCCTTT | 克隆CaCP1 |
2307-CaCP1-R | GGTACCTTAAGGATAAATTTTCTTTTAGGC | |
GUS-QPCR-F | CAGTGAAGGGCCAACAGTTC | GUS基因的定量分析 |
GUS- QPCR-R | CATGTTCATCTGCCCAGTCG | |
NtCAT-F | AGGTACCGCTCATTCACACC | NtCAT基因的定量分析 |
NtCAT-R | AAGCAAGCTTTTGACCCAGA | |
NtSOD-F | AGCTACATGACGCCATTTCC | NtSOD基因的定量分析 |
NtSOD-R | CCCTGTAAAGCAGCACCTTC | |
NtAPX-F | CCATTTCCAGTGCTTGTGGTCTC | NtAPX基因的定量分析 |
NtAPX-R | ATAGGTACCAGCAGAGTGCCA | |
NtLEA5-F | CATCAGCTAGTGTGCCAGGT | NtLEA5基因的定量分析 |
NtLEA5-R | TGGCACCCATGATGTTGTCT | |
NtNHX1-F | CAACTGGTCTTCTTAGTGCT | NtNHX1基因的定量分析 |
NtNHX1-R | GCCTTGTAGTGACTCTTGAA | |
NtPOX2-F | CATCTTCACGGCTGTTCGAG | NtPOX2基因的定量分析 |
NtPOX2-R | TGTTGGGTGGTGAGGTCTTT | |
NtP5CS1-F | TTGCAAACTCTGTCCGTGTG | NtP5CS1基因的定量分析 |
NtP5CS1-R | TTGGCCTCCTTTCCTCCTTT | |
NtSOS1-F | CAAATGTTATCCCCCGAAAGC | NtSOS1基因的定量分析 |
NtSOS1-R | CGGAGAACCTGAGGAAATGTGA | |
NtActin-F | TGGCATCACACTTTCTACAA | RT-qPCR试验的内参基因 |
NtActin-R | CAACGGAATCTCTCAGCTCC |
Table 1 Primer base sequences used in this study
引物Primer | 序列Sequence(5'-3') | 用途Purpose |
---|---|---|
GUS-F | TAGATCTGACTAGTTTACGTCCTGT | 构建载体检测 |
GUS-R | TAGTCTGCCAGTTCAGTTCGT | |
CaMV35S-F | AAGACTGGCGAACAGTTCAT | 载体构建 |
CaMV35S-R | ATAGTGGGATTGTGCGTCAT | |
1381-P1F | CCGGAATTCGCGAAGGTAGTATAATTTAAAAC | 克隆启动子片段 |
1381-P2F | CCGGAATTCTGAATGAAATGATTTGTATTTTG | |
1381-P3F | CCGGAATTCTATGAAATGATCTAATATAATTG | |
1381-P4F | CCGGAATTCATAGAAATCATTAAGATTTTCCG | |
1381-P1R | CGCGTCGACTATAGAACAACTATATAGTATTATG | |
2307-CaCP1-F | TCTAGAATATAGTTGTTCTATAATGGCCTTT | 克隆CaCP1 |
2307-CaCP1-R | GGTACCTTAAGGATAAATTTTCTTTTAGGC | |
GUS-QPCR-F | CAGTGAAGGGCCAACAGTTC | GUS基因的定量分析 |
GUS- QPCR-R | CATGTTCATCTGCCCAGTCG | |
NtCAT-F | AGGTACCGCTCATTCACACC | NtCAT基因的定量分析 |
NtCAT-R | AAGCAAGCTTTTGACCCAGA | |
NtSOD-F | AGCTACATGACGCCATTTCC | NtSOD基因的定量分析 |
NtSOD-R | CCCTGTAAAGCAGCACCTTC | |
NtAPX-F | CCATTTCCAGTGCTTGTGGTCTC | NtAPX基因的定量分析 |
NtAPX-R | ATAGGTACCAGCAGAGTGCCA | |
NtLEA5-F | CATCAGCTAGTGTGCCAGGT | NtLEA5基因的定量分析 |
NtLEA5-R | TGGCACCCATGATGTTGTCT | |
NtNHX1-F | CAACTGGTCTTCTTAGTGCT | NtNHX1基因的定量分析 |
NtNHX1-R | GCCTTGTAGTGACTCTTGAA | |
NtPOX2-F | CATCTTCACGGCTGTTCGAG | NtPOX2基因的定量分析 |
NtPOX2-R | TGTTGGGTGGTGAGGTCTTT | |
NtP5CS1-F | TTGCAAACTCTGTCCGTGTG | NtP5CS1基因的定量分析 |
NtP5CS1-R | TTGGCCTCCTTTCCTCCTTT | |
NtSOS1-F | CAAATGTTATCCCCCGAAAGC | NtSOS1基因的定量分析 |
NtSOS1-R | CGGAGAACCTGAGGAAATGTGA | |
NtActin-F | TGGCATCACACTTTCTACAA | RT-qPCR试验的内参基因 |
NtActin-R | CAACGGAATCTCTCAGCTCC |
Fig. 3 Activity analysis of promoter of CaCP1 A: GUS histochemical staining in transgenic tobacco leaves. B: Expression analysis of GUS in transgenic tobacco leaves. The lower letters indicate significant differences(P<0.05), the same below
[1] | 余海英, 李廷轩, 周健民. 设施土壤次生盐渍化及其对土壤性质的影响[J]. 土壤, 2005, 37(6): 581-586. |
Yu HY, Li TX, Zhou JM. Secondary salinization of greenhouse soil and its effects on soil properties[J]. Soils, 2005, 37(6): 581-586. | |
[2] |
Shah ZH, Rehman HM, Akhtar T, et al. Redox and ionic homeostasis regulations against oxidative, salinity and drought stress in wheat(A systems biology approach)[J]. Front Genet, 2017, 8: 141.
doi: 10.3389/fgene.2017.00141 URL |
[3] |
Varga B, Janda T, László E, et al. Influence of abiotic stresses on the antioxidant enzyme activity of cereals[J]. Acta Physiol Plant, 2012, 34(3): 849-858.
doi: 10.1007/s11738-011-0882-x URL |
[4] |
Cappetta E, Andolfo G, et al. Empowering crop resilience to environmental multiple stress through the modulation of key response components[J]. J Plant Physiol, 2020, 246/247: 153134.
doi: 10.1016/j.jplph.2020.153134 URL |
[5] |
Møller IM, Sweetlove LJ. ROS signalling—specificity is required[J]. Trends Plant Sci, 2010, 15(7): 370-374.
doi: 10.1016/j.tplants.2010.04.008 pmid: 20605736 |
[6] |
Dai XY, Xu YY, Ma QB, et al. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis[J]. Plant Physiol, 2007, 143(4): 1739-1751.
doi: 10.1104/pp.106.094532 URL |
[7] |
van Wyk SG, du Plessis M, Cullis CA, et al. Cysteine protease and cystatin expression and activity during soybean nodule development and senescence[J]. BMC Plant Biol, 2014, 14: 294.
doi: 10.1186/s12870-014-0294-3 pmid: 25404209 |
[8] |
der Hoorn RAV. Plant proteases: from phenotypes to molecular mechanisms[J]. Annu Rev Plant Biol, 2008, 59: 191-223.
doi: 10.1146/annurev.arplant.59.032607.092835 pmid: 18257708 |
[9] |
Poret M, Chandrasekar B, van der Hoorn RAL, et al. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape[J]. Plant Sci, 2016, 246: 139-153.
doi: S0168-9452(16)30023-1 pmid: 26993244 |
[10] |
Deng J, Zhu FG, Liu JX, et al. Transcription factor bHLH2 represses CYSTEINE PROTEASE77 to negatively regulate nodule senescence[J]. Plant Physiol, 2019, 181(4): 1683-1703.
doi: 10.1104/pp.19.00574 pmid: 31591150 |
[11] |
Rodríguez-Herva JJ, González-Melendi P, Cuartas-Lanza R, et al. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses[J]. Cellular Microbiology, 2012, 14(5): 669-681.
doi: 10.1111/j.1462-5822.2012.01749.x pmid: 22233353 |
[12] |
Xiao HJ, Yin YX, Chai WG, et al. Silencing of the CaCP gene delays salt- and osmotic-induced leaf senescence in Capsicum annuum L[J]. Int J Mol Sci, 2014, 15(5): 8316-8334.
doi: 10.3390/ijms15058316 URL |
[13] |
Chen H, Nelson RS, Sherwood JL. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection[J]. BioTechniques, 1994, 16(4): 664-668, 670.
pmid: 8024787 |
[14] |
Xu WR, Yu YH, Ding JH, et al. Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata[J]. Planta, 2010, 231(2): 475-487.
doi: 10.1007/s00425-009-1062-8 URL |
[15] |
Yang Y, Li R, Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves[J]. Plant J, 2000, 22(6): 543-551.
doi: 10.1046/j.1365-313x.2000.00760.x pmid: 10886774 |
[16] | Yin YX, Guo WL, Zhang YL, et al. Cloning and characterisation of a pepper aquaporin, CaAQP, which reduces chilling stress in transgenic tobacco plants[J]. Plant Cell Tissue Organ Cult PCTOC, 2014, 118(3): 431-444. |
[17] |
Hoekema A, Hirsch PR, Hooykaas PJJ, et al. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid[J]. Nature, 1983, 303(5913): 179-180.
doi: 10.1038/303179a0 URL |
[18] |
Arkus KAJ, Cahoon EB, Jez JM. Mechanistic analysis of wheat chlorophyllase[J]. Arch Biochem Biophys, 2005, 438(2): 146-155.
pmid: 15913540 |
[19] |
Guo WL, Chen RG, Gong ZH, et al. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper(Capsicum annuum)leaves subjected to chilling stress[J]. Genet Mol Res, 2012, 11(4): 4063-4080.
doi: 10.4238/2012.September.10.5 pmid: 23079969 |
[20] |
Sade N, Vinocur BJ, Diber A, et al. Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion?[J]. New Phytol, 2009, 181(3): 651-661.
doi: 10.1111/j.1469-8137.2008.02689.x pmid: 19054338 |
[21] | Zhou SY, Hu W, Deng XM, et al. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco[J]. PLoS One, 2012, 7(12): e52439. |
[22] |
Irigoyen J, Einerich DW, Sánchez-Díaz M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa(Medicago sativd)plants[J]. Physiol Plant, 1992, 84: 55-60.
doi: 10.1111/j.1399-3054.1992.tb08764.x URL |
[23] |
Zhang L, Xi DM, Luo L, et al. Cotton GhMPK2 is involved in multiple signaling pathways and mediates defense responses to pathogen infection and oxidative stress[J]. FEBS J, 2011, 278(8): 1367-1378.
doi: 10.1111/j.1742-4658.2011.08056.x URL |
[24] |
Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels[J]. Anal Biochem, 1971, 44(1): 276-287.
doi: 10.1016/0003-2697(71)90370-8 pmid: 4943714 |
[25] |
Ranieri A, Petacco F, Castagna A, et al. Redox state and peroxidase system in sunflower plants exposed to ozone[J]. Plant Sci, 2000, 159(1): 159-167.
doi: 10.1016/s0168-9452(00)00352-6 pmid: 11011103 |
[26] |
Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, et al. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana[J]. Gene, 1993, 129(2): 175-182.
doi: 10.1016/0378-1119(93)90266-6 pmid: 8325504 |
[27] |
Jones JT, Mullet JE. A salt- and dehydration-inducible pea gene, Cyp15a, encodes a cell-wall protein with sequence similarity to cysteine proteases[J]. Plant Mol Biol, 1995, 28(6): 1055-1065.
pmid: 7548823 |
[28] |
Zang QW, Wang CX, Li XY, et al. Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat[J]. J Biosci, 2010, 35(3): 379-388.
doi: 10.1007/s12038-010-0043-1 URL |
[29] |
Chen HJ, Su CT, Lin CH, et al. Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants[J]. J Plant Physiol, 2010, 167(10): 838-847.
doi: 10.1016/j.jplph.2010.01.005 URL |
[30] |
Niño MC, Kim MS, Kang KK, et al. Genome-wide identification and molecular characterization of cysteine protease genes in rice[J]. Plant Biotechnol Rep, 2020, 14(1): 69-87.
doi: 10.1007/s11816-019-00583-8 URL |
[31] |
Park HC, Kim ML, Kang YH, et al. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor[J]. Plant Physiol, 2004, 135(4): 2150-2161.
doi: 10.1104/pp.104.041442 pmid: 15310827 |
[32] |
Gai WX, Ma X, Qiao YM, et al. Characterization of the bZIP transcription factor family in pepper(Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance[J]. Front Plant Sci, 2020, 11: 139.
doi: 10.3389/fpls.2020.00139 URL |
[33] |
Han JY, Li H, Yin B, et al. The papain-like cysteine protease CEP1 is involved in programmed cell death and secondary wall thickening during xylem development in Arabidopsis[J]. J Exp Bot, 2019, 70(1): 205-215.
doi: 10.1093/jxb/ery356 URL |
[34] |
Zhang DD, Liu D, Lv XM, et al. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis[J]. Plant Cell, 2014, 26(7): 2939-2961.
doi: 10.1105/tpc.114.127282 URL |
[35] |
Alomrani S, Kunert KJ, Foyer CH. Papain-like cysteine proteases are required for the regulation of photosynthetic gene expression and acclimation to high light stress[J]. J Exp Bot, 2021, 72(9): 3441-3454.
doi: 10.1093/jxb/erab101 pmid: 33686435 |
[36] |
Khanna-Chopra R. Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation[J]. Protoplasma, 2012, 249(3): 469-481.
doi: 10.1007/s00709-011-0308-z pmid: 21805384 |
[37] |
Liu WF, Guo CL, Huang DQ, et al. The papain-like cysteine protease HpXBCP3 from Haematococcus pluvialis involved in the regulation of growth, salt stress tolerance and chlorophyll synthesis in microalgae[J]. Int J Mol Sci, 2021, 22(21): 11539.
doi: 10.3390/ijms222111539 URL |
[38] |
Wang CL, Lu GQ, Hao YQ, et al. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton[J]. Planta, 2017, 246(3): 453-469.
doi: 10.1007/s00425-017-2704-x pmid: 28474114 |
[39] |
Wang DL, Lu XK, Chen XG, et al. Temporal salt stress-induced transcriptome alterations and regulatory mechanisms revealed by PacBio long-reads RNA sequencing in Gossypium hirsutum[J]. BMC Genomics, 2020, 21(1): 838.
doi: 10.1186/s12864-020-07260-z URL |
[40] | Xu LP, Liu JB, et al. Effect of salt stress on growth and physiology in Melia Azedarach seedlings of six provenances[J]. International Journal of Agriculture and Biology, 2018, 20(2): 471-480. |
[41] |
Choi HW, Kim YJ, Lee SC, et al. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens[J]. Plant Physiol, 2007, 145(3): 890-904.
doi: 10.1104/pp.107.103325 pmid: 17905862 |
[42] |
Hasegawa PM, Bressan RA, Zhu JK, et al. Plant cellular and molecular responses to high salinity[J]. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 463-499.
doi: 10.1146/annurev.arplant.51.1.463 URL |
[43] |
Huda KMK, Banu MSA, Garg B, et al. OsACA6, a P-type IIB Ca2+ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes[J]. Plant J, 2013, 76(6): 997-1015.
doi: 10.1111/tpj.12352 URL |
[44] |
Liu J, Zhu JK. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis[J]. Plant Physiol, 1997, 114(2): 591-596.
doi: 10.1104/pp.114.2.591 pmid: 9193091 |
[45] |
Kant S, Kant P, Raveh E, et al. Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. Halophila[J]. Plant Cell Environ, 2006, 29(7): 1220-1234.
doi: 10.1111/j.1365-3040.2006.01502.x URL |
[46] |
Ben Saad R, Ben Halima N, et al. AlSRG1, a novel gene encoding an RRM-type RNA-binding protein(RBP)from Aeluropus Litto-ralis, confers salt and drought tolerance in transgenic tobacco[J]. Environment and Experiment Botany, 2018, 150: 25-36.
doi: 10.1016/j.envexpbot.2018.03.002 URL |
[47] |
Zhang Y, et al. Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco[J]. Planta, 2018, 248(1): 117-137.
doi: 10.1007/s00425-018-2887-9 pmid: 29616395 |
[48] |
Liu QL, Zhong M, Li S, et al. Overexpression of a Chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress[J]. Plant Physiol Biochem, 2013, 69: 27-33.
doi: 10.1016/j.plaphy.2013.04.016 URL |
[49] |
Han D, Hou YJ, Wang YF, et al. Overexpression of a Malus baccata WRKY transcription factor gene(Mbwrky5)increases drought and salt tolerance in transgenic tobacco[J]. Canadian Journal of Plant Science, 2019, 99(2): 173-183.
doi: 10.1139/cjps-2018-0053 URL |
[1] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[2] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[3] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[4] | LIU Zhen-yin, DUAN Zhi-zhen, PENG Ting, WANG Tong-xin, WANG Jian. Establishment and Optimization of Virus-induced Gene Silencing System in Bougainvillea peruviana ‘Thimma’ [J]. Biotechnology Bulletin, 2023, 39(7): 123-130. |
[5] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[6] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
[7] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[8] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[9] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[10] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[11] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[12] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[13] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[14] | YU Shi-zhou, CAO Ling-gai, WANG Shi-ze, LIU Yong, BIAN Wen-jie, REN Xue-liang. Development Core SNP Markers for Tobacco Germplasm Genotyping [J]. Biotechnology Bulletin, 2023, 39(3): 89-100. |
[15] | CUI Ji-jie, CAI Wen-bo, ZHUANG Qing-hui, GAO Ai-ping, HUANG Jian-feng, CHEN Ya-hui, SONG Zhi-zhong. Biological Function of Gene MiISU1 for Fe-S Cluster Assembly in Mangifera indica [J]. Biotechnology Bulletin, 2023, 39(2): 139-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||