Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (2): 70-79.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0579
Previous Articles Next Articles
CHEN Yi-bo1(), YANG Wan-ming2, YUE Ai-qin1, WANG Li-xiang1, DU Wei-jun1(), WANG Min1()
Received:
2022-05-10
Online:
2023-02-26
Published:
2023-03-07
CHEN Yi-bo, YANG Wan-ming, YUE Ai-qin, WANG Li-xiang, DU Wei-jun, WANG Min. Construction of Soybean Genetic Map Based on SLAF Markers and QTL Mapping Analysis of Salt Tolerance at Seedling Stage[J]. Biotechnology Bulletin, 2023, 39(2): 70-79.
NaCl浓度 NaCl concentration/(mmol·L-1) | 耐盐等级 Salt tolerance grade |
---|---|
130 | 0 |
160 | 1 |
190 | 2 |
200 | 3 |
210 | 4 |
220 | 5 |
230 | 6 |
240 | 7 |
250 | 8 |
260 | 9 |
270 | 10 |
280 | 11 |
290 | 12 |
300 | 13 |
310 | 14 |
320 | 15 |
Table 1 Comparison between plant death concentration and salt tolerance grade
NaCl浓度 NaCl concentration/(mmol·L-1) | 耐盐等级 Salt tolerance grade |
---|---|
130 | 0 |
160 | 1 |
190 | 2 |
200 | 3 |
210 | 4 |
220 | 5 |
230 | 6 |
240 | 7 |
250 | 8 |
260 | 9 |
270 | 10 |
280 | 11 |
290 | 12 |
300 | 13 |
310 | 14 |
320 | 15 |
染色体 Chromosome | 染色体长度 Chromosome length/cM | 标记数 Number of markers | 平均图距 Average distance/cM | 最大Gap Max gap/cM | Gap长度<5 cM的比例 Proportion of those with gap<5 cM |
---|---|---|---|---|---|
1 | 152.35 | 57 | 2.67 | 16.24 | 0.88 |
2 | 208.45 | 577 | 0.36 | 9.13 | 1.00 |
3 | 121.27 | 68 | 1.78 | 9.17 | 0.94 |
4 | 132.43 | 528 | 0.25 | 9.45 | 0.99 |
5 | 164.72 | 499 | 0.33 | 3.34 | 1.00 |
6 | 163.35 | 404 | 0.40 | 9.44 | 1.00 |
7 | 208.22 | 366 | 0.57 | 7.31 | 0.98 |
8 | 176.81 | 580 | 0.30 | 9.87 | 0.99 |
9 | 146.00 | 414 | 0.35 | 17.92 | 0.99 |
10 | 144.33 | 608 | 0.24 | 23.12 | 1.00 |
11 | 119.15 | 105 | 1.13 | 8.12 | 0.97 |
12 | 149.87 | 545 | 0.27 | 25.26 | 1.00 |
13 | 138.98 | 274 | 0.51 | 15.38 | 0.98 |
14 | 174.33 | 120 | 1.45 | 16.63 | 0.96 |
15 | 149.64 | 616 | 0.24 | 8.19 | 1.00 |
16 | 92.51 | 28 | 3.30 | 16.15 | 0.85 |
17 | 193.28 | 214 | 0.90 | 6.87 | 0.99 |
18 | 196.48 | 740 | 0.27 | 27.09 | 0.99 |
19 | 106.30 | 534 | 0.20 | 9.76 | 0.99 |
20 | 209.99 | 668 | 0.31 | 28.45 | 0.98 |
Table 2 Chromosome marker information
染色体 Chromosome | 染色体长度 Chromosome length/cM | 标记数 Number of markers | 平均图距 Average distance/cM | 最大Gap Max gap/cM | Gap长度<5 cM的比例 Proportion of those with gap<5 cM |
---|---|---|---|---|---|
1 | 152.35 | 57 | 2.67 | 16.24 | 0.88 |
2 | 208.45 | 577 | 0.36 | 9.13 | 1.00 |
3 | 121.27 | 68 | 1.78 | 9.17 | 0.94 |
4 | 132.43 | 528 | 0.25 | 9.45 | 0.99 |
5 | 164.72 | 499 | 0.33 | 3.34 | 1.00 |
6 | 163.35 | 404 | 0.40 | 9.44 | 1.00 |
7 | 208.22 | 366 | 0.57 | 7.31 | 0.98 |
8 | 176.81 | 580 | 0.30 | 9.87 | 0.99 |
9 | 146.00 | 414 | 0.35 | 17.92 | 0.99 |
10 | 144.33 | 608 | 0.24 | 23.12 | 1.00 |
11 | 119.15 | 105 | 1.13 | 8.12 | 0.97 |
12 | 149.87 | 545 | 0.27 | 25.26 | 1.00 |
13 | 138.98 | 274 | 0.51 | 15.38 | 0.98 |
14 | 174.33 | 120 | 1.45 | 16.63 | 0.96 |
15 | 149.64 | 616 | 0.24 | 8.19 | 1.00 |
16 | 92.51 | 28 | 3.30 | 16.15 | 0.85 |
17 | 193.28 | 214 | 0.90 | 6.87 | 0.99 |
18 | 196.48 | 740 | 0.27 | 27.09 | 0.99 |
19 | 106.30 | 534 | 0.20 | 9.76 | 0.99 |
20 | 209.99 | 668 | 0.31 | 28.45 | 0.98 |
性状 Trait | 亲本 Parents | 重组自交群体 RIL | |||||
---|---|---|---|---|---|---|---|
晋大53 Jinda 53 | 平南Pingnan | 显著性Significance | 均值±标准差Mean±SD | 变异系数CV/% | 偏度Skewness | 峰度Kurtosis | |
2021PDCⅠ | 15 | 3 | ** | 8.566 9±2.252 3 | 26.3 | 0.18 | -0.521 |
2021PDC II | 15 | 2 | ** | 8.480 2±2.687 3 | 31.6 | -0.089 | -0.019 |
2021PDCⅢ | 14 | 2 | ** | 7.790 3±2.235 2 | 28.7 | 0.053 | -0.105 |
2021PDCA | 15 | 3 | ** | 8.284 3±1.860 9 | 22.5 | 0.215 | 0.427 |
2020PDCⅠ | 14 | 2 | ** | 7.752 0±2.367 0 | 35.1 | 0.030 | -0.825 |
2020PDC II | 14 | 2 | ** | 8.291 3±1.975 4 | 31.4 | 0.060 | -0.762 |
2020PDCⅢ | 14 | 4 | ** | 7.610 2±1.518 2 | 22.9 | 0.211 | -0.609 |
2020PDCA | 14 | 3 | ** | 7.883 5±1.445 4 | 22.1 | 0.264 | -0.763 |
Table 3 Phenotypic statistics of RIL population at seedling stage
性状 Trait | 亲本 Parents | 重组自交群体 RIL | |||||
---|---|---|---|---|---|---|---|
晋大53 Jinda 53 | 平南Pingnan | 显著性Significance | 均值±标准差Mean±SD | 变异系数CV/% | 偏度Skewness | 峰度Kurtosis | |
2021PDCⅠ | 15 | 3 | ** | 8.566 9±2.252 3 | 26.3 | 0.18 | -0.521 |
2021PDC II | 15 | 2 | ** | 8.480 2±2.687 3 | 31.6 | -0.089 | -0.019 |
2021PDCⅢ | 14 | 2 | ** | 7.790 3±2.235 2 | 28.7 | 0.053 | -0.105 |
2021PDCA | 15 | 3 | ** | 8.284 3±1.860 9 | 22.5 | 0.215 | 0.427 |
2020PDCⅠ | 14 | 2 | ** | 7.752 0±2.367 0 | 35.1 | 0.030 | -0.825 |
2020PDC II | 14 | 2 | ** | 8.291 3±1.975 4 | 31.4 | 0.060 | -0.762 |
2020PDCⅢ | 14 | 4 | ** | 7.610 2±1.518 2 | 22.9 | 0.211 | -0.609 |
2020PDCA | 14 | 3 | ** | 7.883 5±1.445 4 | 22.1 | 0.264 | -0.763 |
性状 Trait | 2021PDCⅠ | 2021PDC II | 2021PDCⅢ | 2021PDCA | 2020PDCⅠ | 2020PDC II | 2020PDCⅢ | 2020PDCA |
---|---|---|---|---|---|---|---|---|
2021PDCⅠ | 1 | |||||||
2021PDC II | 0.972 8** | 1 | ||||||
2021PDCⅢ | 0.821 9** | 0.999 8** | 1 | |||||
2021PDCA | 0.808 1** | 0.999 7** | 0.999 9** | 1 | ||||
2020PDCⅠ | 0.651** | 0.995 5** | 0.999 9** | 0.999 9** | 1 | |||
2020PDC II | 0.631 2** | 0.601 4** | 0.870 9** | 0.881 8** | 0.959 1** | 1 | ||
2020PDCⅢ | 0.591 7** | 0.656 2** | 0.664 5** | 0.681 8** | 0.832 1** | 0.999 9** | 1 | |
2020PDCA | 0.323 7** | 0.362 9** | 0.398 6** | 0.415 5** | 0.689 2** | 0.995 4** | 0.999 9** | 1 |
Table 4 Correlation analysis of salt tolerance traits
性状 Trait | 2021PDCⅠ | 2021PDC II | 2021PDCⅢ | 2021PDCA | 2020PDCⅠ | 2020PDC II | 2020PDCⅢ | 2020PDCA |
---|---|---|---|---|---|---|---|---|
2021PDCⅠ | 1 | |||||||
2021PDC II | 0.972 8** | 1 | ||||||
2021PDCⅢ | 0.821 9** | 0.999 8** | 1 | |||||
2021PDCA | 0.808 1** | 0.999 7** | 0.999 9** | 1 | ||||
2020PDCⅠ | 0.651** | 0.995 5** | 0.999 9** | 0.999 9** | 1 | |||
2020PDC II | 0.631 2** | 0.601 4** | 0.870 9** | 0.881 8** | 0.959 1** | 1 | ||
2020PDCⅢ | 0.591 7** | 0.656 2** | 0.664 5** | 0.681 8** | 0.832 1** | 0.999 9** | 1 | |
2020PDCA | 0.323 7** | 0.362 9** | 0.398 6** | 0.415 5** | 0.689 2** | 0.995 4** | 0.999 9** | 1 |
年份 Year | 性状 Trait | 染色体 Chromosome | 位置 Position/cM | 位置区间 Support interval/cM | 标记区间 Flanking marker | LOD | PVE/% | 加性效应 Additive effector |
---|---|---|---|---|---|---|---|---|
2021 | qPDC11 | 11 | 18.19 | 13.77-28.04 | Marker1 810 382-Marker1 691 704 | 3.00 | 23.24 | -0.53 |
2021 | qPDC3-1 | 3 | 59.07 | 58.81-59.07 | Marker3 281 914-Marker3 338 677 | 2.71 | 23.24 | 0.58 |
2021 | qPDC9 | 9 | 78.64 | 73.04-78.64 | Marker878 031-Marker939 166 | 4.01 | 24.67 | 1.20 |
2021 | qPDC18 | 18 | 123.18 | 114.18-131.04 | Marker2 418 985-Marker2 227 148 | 3.47 | 38.28 | -1.35 |
2021 | qPDC20 | 20 | 68.49 | 56.82-77.07 | Marker174 668-Marker200 562 | 5.18 | 33.23 | 0.89 |
2020 | qPDC3-2 | 3 | 108.22 | 89.91-108.22 | Marker3 196 697-Marker3 277 492 | 3.04 | 31.22 | -0.72 |
2020 | qPDC15 | 15 | 76.14 | 72.32-76.14 | Marker1 156 747-Marker1 191 086 | 3.15 | 29.53 | 0.71 |
2020 | qPDC7-1 | 7 | 100.5 | 98.78-100.65 | Marker3 6283 86-Marker3 638 386 | 4.09 | 24.58 | 1.28 |
2021 | qPDC2 | 2 | 142.57 | 138.1-145.36 | Marker2 455 132-Marker2 619 422 | 2.96 | 34.19 | 0.42 |
2021 | qPDC5 | 5 | 156.33 | 148.08-163.45 | Marker471 588-Marker535 412 | 5.01 | 34.04 | -0.57 |
2020 | qPDC7-2 | 7 | 95.87 | 63.68-90.5 | Marker3 672 083-Marker3 638 386 | 4.73 | 31.84 | 0.97 |
2020 | qPDC13 | 13 | 3.01 | 0.01-5.01 | Marker3 430 788-satt659 | 2.89 | 34.02 | -0.44 |
Table 5 Analysis of QTL associated with salt tolerance in soybean seedling
年份 Year | 性状 Trait | 染色体 Chromosome | 位置 Position/cM | 位置区间 Support interval/cM | 标记区间 Flanking marker | LOD | PVE/% | 加性效应 Additive effector |
---|---|---|---|---|---|---|---|---|
2021 | qPDC11 | 11 | 18.19 | 13.77-28.04 | Marker1 810 382-Marker1 691 704 | 3.00 | 23.24 | -0.53 |
2021 | qPDC3-1 | 3 | 59.07 | 58.81-59.07 | Marker3 281 914-Marker3 338 677 | 2.71 | 23.24 | 0.58 |
2021 | qPDC9 | 9 | 78.64 | 73.04-78.64 | Marker878 031-Marker939 166 | 4.01 | 24.67 | 1.20 |
2021 | qPDC18 | 18 | 123.18 | 114.18-131.04 | Marker2 418 985-Marker2 227 148 | 3.47 | 38.28 | -1.35 |
2021 | qPDC20 | 20 | 68.49 | 56.82-77.07 | Marker174 668-Marker200 562 | 5.18 | 33.23 | 0.89 |
2020 | qPDC3-2 | 3 | 108.22 | 89.91-108.22 | Marker3 196 697-Marker3 277 492 | 3.04 | 31.22 | -0.72 |
2020 | qPDC15 | 15 | 76.14 | 72.32-76.14 | Marker1 156 747-Marker1 191 086 | 3.15 | 29.53 | 0.71 |
2020 | qPDC7-1 | 7 | 100.5 | 98.78-100.65 | Marker3 6283 86-Marker3 638 386 | 4.09 | 24.58 | 1.28 |
2021 | qPDC2 | 2 | 142.57 | 138.1-145.36 | Marker2 455 132-Marker2 619 422 | 2.96 | 34.19 | 0.42 |
2021 | qPDC5 | 5 | 156.33 | 148.08-163.45 | Marker471 588-Marker535 412 | 5.01 | 34.04 | -0.57 |
2020 | qPDC7-2 | 7 | 95.87 | 63.68-90.5 | Marker3 672 083-Marker3 638 386 | 4.73 | 31.84 | 0.97 |
2020 | qPDC13 | 13 | 3.01 | 0.01-5.01 | Marker3 430 788-satt659 | 2.89 | 34.02 | -0.44 |
年份 Year | 性状 Trait | 染色体 Chromosome | 位置 Position/cM | 标记 1 Marker 1 | 标记 2 Marker 2 | LOD | PVE /% | 加性效应 Additive effector |
---|---|---|---|---|---|---|---|---|
2021 | qPDC20 | 20 | 68.49 | 174 668 | 200 562 | 5.18 | 33.23 | 0.89 |
Table 6 Epistatic loci of soybean at seedling stage
年份 Year | 性状 Trait | 染色体 Chromosome | 位置 Position/cM | 标记 1 Marker 1 | 标记 2 Marker 2 | LOD | PVE /% | 加性效应 Additive effector |
---|---|---|---|---|---|---|---|---|
2021 | qPDC20 | 20 | 68.49 | 174 668 | 200 562 | 5.18 | 33.23 | 0.89 |
[1] |
Chen HT, Liu XQ, Zhang HM, et al. Advances in salinity tolerance of soybean: genetic diversity, heredity, and gene identification contribute to improving salinity tolerance[J]. J Integr Agric, 2018, 17(10): 2215-2221.
doi: 10.1016/S2095-3119(17)61864-1 URL |
[2] | 胡一, 韩霁昌, 张扬. 盐碱地改良技术研究综述[J]. 陕西农业科学, 2015, 61(2): 67-71. |
Hu Y, Han JC, Zhang Y. Review of saline-alkali land improvement technology[J]. Shaanxi J Agric Sci, 2015, 61(2): 67-71. | |
[3] | 李彬, 王志春, 孙志高, 等. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究, 2005, 23(2): 154-158. |
Li B, Wang ZC, Sun ZG, et al. Resources and sustainable resource exploitation of salinized land in China[J]. Agric Res Arid Areas, 2005, 23(2): 154-158. | |
[4] | 刘梅芳, 樊琦. 中国大豆消费、生产和进口现状及存在的问题[J]. 粮食科技与经济, 2021, 46(6): 28-35. |
Liu MF, Fan Q. Study on the current situation and problems of soybean consumption, production and import in China[J]. Grain Sci Technol Econ, 2021, 46(6): 28-35. | |
[5] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[6] | 刘铎, 丛日春, 党宏忠, 等. 柳树幼苗渗透调节物质对中、碱性钠盐响应的差异性[J]. 生态环境学报, 2014, 23(9): 1531-1535. |
Liu D, Cong RC, Dang HZ, et al. Comparative effects of salt and alkali stresses on plant physiology of willow[J]. Ecol Environ Sci, 2014, 23(9): 1531-1535. | |
[7] |
陈成升, 谢志霞, 刘小京. 渗盐分、干旱胁迫下冬小麦叶片部分渗透调节物质的动态变化[J]. 植物研究, 2009, 29(6): 708-713.
doi: 10.7525/j.issn.1673-5102.2009.06.012 |
Chen CS, Xie ZX, Liu XJ. Dynamic transformation of the substances of osmotic adjustment in winter wheat under iso-osmotic salt and drought stresses[J]. Bull Bot Res, 2009, 29(6): 708-713. | |
[8] | Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield[J]. Plant Biol(Stuttg), 2019, 21(Suppl 1): 31-38. |
[9] |
Zhu JK. Plant salt stress[J]. Encyclopedia of Life Sciences(eLS), 2007. DOI: 10.1002/9780470015902.a0001300.pub2.
doi: 10.1002/9780470015902.a0001300.pub2 |
[10] |
Xu DH, Tuyen DD. Genetic studies on saline and sodic tolerances in soybean[J]. Breed Sci, 2012, 61(5): 559-565.
doi: 10.1270/jsbbs.61.559 URL |
[11] | 陈华涛, 陈新, 喻德跃, 等. 大豆耐盐基因定位及耐盐基因克隆研究进展[J]. 江苏农业科学, 2010, 38(5): 78-80. |
Chen HT, Chen X, Yu DY, et al. Research progress on localization and cloning of salt tolerance genes in soybean[J]. Jiangsu Agric Sci, 2010, 38(5): 78-80. | |
[12] |
Guan RX, Qu Y, Guo Y, et al. Salinity tolerance in soybean is modulated by natural variation in GmSALT3[J]. Plant J, 2014, 80(6): 937-950.
doi: 10.1111/tpj.12695 URL |
[13] | Zhang W, Liao XL, Cui YM, et al. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean[J]. PLoS Genet, 2019, 15(1): e1007798. |
[14] | 唐晓飞, 董兴月, 魏崃, 等. 转大豆Na+/H+逆向转运蛋白GmNHX1基因植株的获得[J]. 分子植物育种, 2016, 14(4): 904-909. |
Tang XF, Dong XY, Wei L, et al. Obtaining transgenic soybean plants with Na+/H+ antiporter(GmNHX1)[J]. Mol Plant Breed, 2016, 14(4): 904-909. | |
[15] |
Sun TJ, Fan L, Yang J, et al. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na+efflux rate and K+/Na+ ratio in Arabidopsis[J]. BMC Plant Biol, 2019, 19(1): 469.
doi: 10.1186/s12870-019-2084-4 URL |
[16] |
Zhao XF, Wei PP, Liu Z, et al. Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress[J]. Acta Physiol Plant, 2016, 39(1): 1-11.
doi: 10.1007/s11738-016-2300-x URL |
[17] | Wei PP, Wang LC, Liu AL, et al. GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean[J]. Front Plant Sci, 2016, 7: 1082. |
[18] |
Chen HT, Chen X, Gu HP, et al. GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants[J]. Plant Growth Regul, 2014, 73(3): 299-308.
doi: 10.1007/s10725-014-9890-3 URL |
[19] |
Liao Y, Zou HF, Wang HW, et al. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants[J]. Cell Res, 2008, 18(10): 1047-1060.
doi: 10.1038/cr.2008.280 URL |
[20] |
Wang F, Chen HW, Li QT, et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants[J]. Plant J, 2015, 83(2): 224-236.
doi: 10.1111/tpj.12879 URL |
[21] |
Liao Y, Zou HF, Wei W, et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis[J]. Planta, 2008, 228(2): 225-240.
doi: 10.1007/s00425-008-0731-3 URL |
[22] |
Zhang GY, Chen M, Li LC, et al. Overexpression of the soybean GmERF3gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco[J]. J Exp Bot, 2009, 60(13): 3781-3796.
doi: 10.1093/jxb/erp214 URL |
[23] |
Pinheiro GL, Marques CS, Costa MDBL, et al. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response[J]. Gene, 2009, 444(1/2): 10-23.
doi: 10.1016/j.gene.2009.05.012 URL |
[24] |
Sun XW, Liu DY, Zhang XF, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One, 2013, 8(3): e58700.
doi: 10.1371/journal.pone.0058700 URL |
[25] |
Liu DY, Ma CX, Hong WG, et al. Construction and analysis of high-density linkage map using high-throughput sequencing data[J]. PLoS One, 2014, 9(6): e98855.
doi: 10.1371/journal.pone.0098855 URL |
[26] | 王聪, 朱月林, 杨立飞, 等. 菜用大豆耐盐品种的筛选及其耐盐生理特性[J]. 江苏农业学报, 2009, 25(3): 621-627. |
Wang C, Zhu YL, Yang LF, et al. Screening of vegetable soybean cultivars for salt tolerance and their physiological characteristics[J]. Jiangsu J Agric Sci, 2009, 25(3): 621-627. | |
[27] | McCouch SR, Cho YG, Yano M, et al. Report on QTL nomenclature[J]. Rice Genet Newsl, 1997, 14: 11-13. |
[28] | 张威, 廖锡良, 喻德跃, 等. 大豆耐盐性研究进展[J]. 土壤与作物, 2018, 7(3): 284-292. |
Zhang W, Liao XL, Yu DY, et al. A review of salt tolerance in soybean(Glycine max(L.)Merill)[J]. Soils Crops, 2018, 7(3): 284-292. | |
[29] | Lee GJ, Carter TE, Villagarcia MR, et al. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars[J]. TAG Theor Appl Genet Theor Und Angewandte Genet, 2004, 109(8): 1610-1619. |
[30] |
Hamwieh A, Tuyen DD, Cong H, et al. Identification and validation of a major QTL for salt tolerance in soybean[J]. Euphytica, 2011, 179(3): 451-459.
doi: 10.1007/s10681-011-0347-8 URL |
[31] |
Chen HT, Cui SY, Fu SX, et al. Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean(Glycine max L.)[J]. Aust J Agric Res, 2008, 59(12): 1086.
doi: 10.1071/AR08104 URL |
[32] |
Ha BK, Vuong TD, Velusamy V, et al. Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean(Glycine soja)PI 483463[J]. Euphytica, 2013, 193(1): 79-88.
doi: 10.1007/s10681-013-0944-9 URL |
[33] | 杨燕. 大豆幼苗期耐盐QTL的定位及候选基因的克隆[D]. 南京: 南京农业大学, 2013. |
Yang Y. Mapping QTL conferring salt tolerance at seedling stage and cloning of candidate genes in soybean[D]. Nanjing: Nanjing Agricultural University, 2013. | |
[34] | 方义生, 曹东, 杨红丽, 等. 大豆耐盐相关基因研究进展[J]. 中国油料作物学报, 2020, 42(4): 512-526. |
Fang YS, Cao D, Yang HL, et al. Research progress of salt-tolerance genes in soybean[J]. Chin J Oil Crop Sci, 2020, 42(4): 512-526. | |
[35] | 闫玮雯. 大豆耐盐QTL定位及耐盐相关基因克隆[D]. 秦皇岛: 河北科技师范学院, 2012. |
Yan WW. QTL mapping and related gene cloning for salt tolerance in soybean[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2012. | |
[36] |
Kan GZ, Zhang W, Yang WM, et al. Association mapping of soybean seed germination under salt stress[J]. Mol Genet Genomics, 2015, 290(6): 2147-2162.
doi: 10.1007/s00438-015-1066-y pmid: 26001372 |
[37] |
Do TD, Vuong TD, Dunn D, et al. Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III[J]. Theor Appl Genet, 2018, 131(3): 513-524.
doi: 10.1007/s00122-017-3015-0 pmid: 29151146 |
[38] | 刘谢香. 大豆苗期耐盐基因GmSALT3标记开发利用及出苗期耐盐QTL发掘[D]. 北京: 中国农业科学院, 2019. |
Liu XX. Marker development and utilization of salt tolerance gene GmSALT3 at seedling stage and QTL mapping for salt tolerance at emergence stage in soybean[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. |
[1] | HAN Zhi-yang, JIA Zi-miao, LIANG Qiu-ju, WANG Ke, TANG Hua-li, YE Xing-guo, ZHANG Shuang-xi. Salt Tolerance at Seedling Stage and Analysis of Selenium and Folic Acid Content in Seeds in Two Sets of Wheat-Dasypyrum villosum Chromosom Additional Lines [J]. Biotechnology Bulletin, 2023, 39(8): 185-193. |
[2] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[3] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
[4] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[5] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[6] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[7] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[8] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[9] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[10] | BAI Miao, TIAN Wen-qing, WU Shuai, WANG Min, WANG Li-xiang, YUE Ai-qin, NIU Jing-ping, ZHANG Yong-po, GAO Chun-yan, ZHANG Wu-xia, GUO Shu-jin, DU Wei-jun, ZHAO Jin-zhong. Effects of Hormonal and Adversely Stress on Vitamin E and γ-TMT Gene Expression in Soybeans [J]. Biotechnology Bulletin, 2023, 39(10): 148-162. |
[11] | YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China [J]. Biotechnology Bulletin, 2023, 39(1): 1-15. |
[12] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[13] | LIU Jia-xin, ZHANG Hui-long, ZOU Rong-song, YANG Xiu-yan, ZHU Jian-feng, ZHANG Hua-xin. Research Progress in Na+ Antiport and Physiological Growth Mechanisms of Differernt Halophytes Adapted to Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 59-72. |
[14] | HUANG Jing, ZHU Liang, XUE Peng-bo, FU Qiang. Research on Mechanism and QTL Mapping Associated with Cadmium Accumulation in Rice Leaves and Grains [J]. Biotechnology Bulletin, 2022, 38(8): 118-126. |
[15] | GUO Bin-hui, SONG Li. Transcription of Ethylene Biosynthesis and Signaling Associated Genes in Response to Heterodera glycine Infection [J]. Biotechnology Bulletin, 2022, 38(8): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||