Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (3): 116-122.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0743
Previous Articles Next Articles
LI Tian-shun1(), LI Chen-wei1, WANG Jia2, ZHU Long-Jiao2, XU Wen-tao1,2()
Received:
2022-06-21
Online:
2023-03-26
Published:
2023-04-10
LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening[J]. Biotechnology Bulletin, 2023, 39(3): 116-122.
[1] |
Ali MM, Slepenkin A, Peterson E, et al. A simple DNAzyme-based fluorescent assay for Klebsiella pneumoniae[J]. Chembiochem, 2019, 20(7): 906-910.
doi: 10.1002/cbic.v20.7 URL |
[2] |
Blind M, Blank M. Aptamer selection technology and recent advances[J]. Mol Ther Nucleic Acids, 2015, 4(1): e223.
doi: 10.1038/mtna.2014.74 URL |
[3] |
Boussebayle A, Torka D, Ollivaud S, et al. Next-level riboswitch development-implementation of Capture-SELEX facilitates identification of a new synthetic riboswitch[J]. Nucleic Acids Res, 2019, 47(9): 4883-4895.
doi: 10.1093/nar/gkz216 pmid: 30957848 |
[4] |
Douglas SM, Marblestone AH, Teerapittayanon S, et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno[J]. Nucleic Acids Res, 2009, 37(15): 5001-5006.
doi: 10.1093/nar/gkp436 pmid: 19531737 |
[5] |
周子琦, 张洋子, 兰欣悦, 等. 发光核酸适配体的筛选及应用[J]. 生物技术通报, 2022, 38(5): 240-247.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1183 |
Zhou ZQ, Zhang YZ, Lan XY, et al. Selection and application of light-up nucleic acid aptamers[J]. Biotechnol Bull, 2022, 38(5): 240-247. | |
[6] |
Xu WT, He WC, Du ZH, et al. Functional nucleic acid nanomaterials: development, properties, and applications[J]. Angew Chem Int Ed Engl, 2021, 60(13): 6890-6918.
doi: 10.1002/anie.v60.13 URL |
[7] |
Zhu C, Li LS, Yang G, et al. Online reaction based single-step capillary electrophoresis-systematic evolution of ligands by exponential enrichment for ssDNA aptamers selection[J]. Anal Chim Acta, 2019, 1070: 112-122.
doi: S0003-2670(19)30468-4 pmid: 31103164 |
[8] |
Han SR, Yu J, Lee SW. In vitro selection of RNA aptamers that selectively bind danofloxacin[J]. Biochem Biophys Res Commun, 2014, 448(4): 397-402.
doi: 10.1016/j.bbrc.2014.04.103 URL |
[9] |
Thiel WH, Bair T, Wyatt Thiel K, et al. Nucleotide bias observed with a short SELEX RNA aptamer library[J]. Nucleic Acid Ther, 2011, 21(4): 253-263.
doi: 10.1089/nat.2011.0288 pmid: 21793789 |
[10] |
Tsuji S, Hirabayashi N, Kato S, et al. Effective isolation of RNA aptamer through suppression of PCR bias[J]. Biochem Biophys Res Commun, 2009, 386(1): 223-226.
doi: 10.1016/j.bbrc.2009.06.013 URL |
[11] |
Ellington AD, Szostak JW. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures[J]. Nature, 1992, 355(6363): 850-852.
doi: 10.1038/355850a0 |
[12] |
Yunusov D, So M, Shayan S, et al. Kinetic capillary electrophoresis-based affinity screening of aptamer clones[J]. Anal Chim Acta, 2009, 631(1): 102-107.
doi: 10.1016/j.aca.2008.10.027 pmid: 19046686 |
[13] |
He CZ, Zhang KH, Wang T, et al. Single-primer-limited amplification: a method to generate random single-stranded DNA sub-library for aptamer selection[J]. Anal Biochem, 2013, 440(1): 63-70.
doi: 10.1016/j.ab.2013.05.008 URL |
[14] |
Kang J, Lee MS, Gorenstein DG. The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: application to in vitro combinatorial selection of aptamers[J]. J Biochem Biophys Methods, 2005, 64(2): 147-151.
doi: 10.1016/j.jbbm.2005.06.003 URL |
[15] |
Redcenko O, Draberova L, Draber P. Carboxymethylcellulose enhances the production of single-stranded DNA aptamers generated by asymmetric PCR[J]. Anal Biochem, 2020, 589: 113502.
doi: 10.1016/j.ab.2019.113502 URL |
[16] | 孟祥贤, 羊小海, 王柯敏, 等. 金纳米颗粒介导不对称PCR: 制备单链核酸的新方法[J]. 化学学报, 2010, 68(9): 917-920. |
Meng XX, Yang XH, Wang KM, et al. Gold nanoparticle-based asymmetric PCR for single-strand DNA[J]. Acta Chimica Sin, 2010, 68(9): 917-920. | |
[17] |
Sanchez JA, Pierce KE, Rice JE, et al. Linear-after-the-exponential(LATE)-PCR: an advanced method of asymmetric PCR and its uses in quantitative real-time analysis[J]. Proc Natl Acad Sci USA, 2004, 101(7): 1933-1938.
doi: 10.1073/pnas.0305476101 URL |
[18] |
Tolnai Z, Harkai Á, Szeitner Z, et al. A simple modification increases specificity and efficiency of asymmetric PCR[J]. Anal Chim Acta, 2019, 1047: 225-230.
doi: S0003-2670(18)31219-4 pmid: 30567654 |
[19] |
Shao KK, Shi XH, Zhu XJ, et al. Construction and optimization of an efficient amplification method of a random ssDNA library by asymmetric emulsion PCR[J]. Biotechnol Appl Biochem, 2017, 64(2): 239-243.
doi: 10.1002/bab.2017.64.issue-2 URL |
[20] |
Heiat M, Ranjbar R, Latifi AM, et al. Essential strategies to optimize asymmetric PCR conditions as a reliable method to generate large amount of ssDNA aptamers[J]. Biotechnol Appl Biochem, 2017, 64(4): 541-548.
doi: 10.1002/bab.2017.64.issue-4 URL |
[21] |
Lee ES, Kim EJ, Park TK, et al. Gold nanoparticle-assisted SELEX as a visual monitoring platform for the development of small molecule-binding DNA aptasensors[J]. Biosens Bioelectron, 2021, 191: 113468.
doi: 10.1016/j.bios.2021.113468 URL |
[22] |
Svobodová M, Pinto A, Nadal P, et al. Comparison of different methods for generation of single-stranded DNA for SELEX processes[J]. Anal Bioanal Chem, 2012, 404(3): 835-842.
doi: 10.1007/s00216-012-6183-4 pmid: 22733247 |
[23] |
Zhang YZ, Xu H, Zhou HY, et al. Indirect purification method provides high yield and quality ssDNA sublibrary for potential aptamer selection[J]. Anal Biochem, 2015, 476: 84-90.
doi: 10.1016/j.ab.2015.02.027 pmid: 25747350 |
[24] |
Song SX, Wang XY, Xu K, et al. Selection of highly specific aptamers to Vibrio parahaemolyticus using cell-SELEX powered by functionalized graphene oxide and rolling circle amplification[J]. Anal Chim Acta, 2019, 1052: 153-162.
doi: 10.1016/j.aca.2018.11.047 URL |
[25] |
Larsson C, Koch J, Nygren A, et al. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes[J]. Nat Methods, 2004, 1(3): 227-232.
doi: 10.1038/nmeth723 |
[26] |
Citartan M, Tang TH, Tan SC, et al. Conditions optimized for the preparation of single-stranded DNA(ssDNA)employing lambda exonuclease digestion in generating DNA aptamer[J]. World J Microbiol Biotechnol, 2011, 27(5): 1167-1173.
doi: 10.1007/s11274-010-0563-8 URL |
[27] |
Momeni M, Mashayekhi K, Navashenaq JG, et al. Identification of G-quadruplex anti-Interleukin-2 aptamer with high specificity through SELEX stringency[J]. Heliyon, 2022, 8(6): e09721.
doi: 10.1016/j.heliyon.2022.e09721 URL |
[28] |
Subramanian K, Rutvisuttinunt W, Scott W, et al. The enzymatic basis of processivity in λ exonuclease[J]. Nucleic Acids Res, 2003, 31(6): 1585-1596.
pmid: 12626699 |
[29] |
Komarova NV, Glukhov SI, Andrianova MS, et al. Use of the Cy3 and Cy5 fluorescent labels to protect a DNA strand from degradation under λ exonuclease treatment[J]. Moscow Univ Chem Bull, 2018, 73(1): 19-26.
doi: 10.3103/S0027131418020062 |
[30] |
Nadal P, Pinto A, Svobodova M, et al. DNA aptamers against the lup an 1 food allergen[J]. PLoS One, 2012, 7(4): e35253.
doi: 10.1371/journal.pone.0035253 URL |
[31] |
Nehdi A, Samman N, Aguilar-Sánchez V, et al. Novel strategies to optimize the amplification of single-stranded DNA[J]. Front Bioeng Biotechnol, 2020, 8: 401.
doi: 10.3389/fbioe.2020.00401 URL |
[32] |
Coonahan ES, Yang KA, Pecic S, et al. Structure-switching aptamer sensors for the specific detection of piperaquine and mefloquine[J]. Sci Transl Med, 2021, 13(585): eabe1535.
doi: 10.1126/scitranslmed.abe1535 URL |
[33] |
Yang LY, Gao T, Li WJ, et al. Ni-nitrilotriacetic acid affinity SELEX method for selection of DNA aptamers specific to the N-cadherin protein[J]. ACS Comb Sci, 2020, 22(12): 867-872.
doi: 10.1021/acscombsci.0c00165 pmid: 33146506 |
[34] | Kohlberger M, Gadermaier G. SELEX: Critical factors and optimization strategies for successful aptamer selection[J]. Biotechnol Appl Biochem, 2021, Aug 24. |
[35] |
Paul A, Avci-Adali M, Ziemer G, et al. Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems during cell-SELEX[J]. Oligonucleotides, 2009, 19(3): 243-254.
doi: 10.1089/oli.2009.0194 pmid: 19732022 |
[36] |
Wilson R. Preparation of single-stranded DNA from PCR products with streptavidin magnetic beads[J]. Nucleic Acid Ther, 2011, 21(6): 437-440.
doi: 10.1089/nat.2011.0322 pmid: 22047177 |
[37] |
Shen ZF, Wu ZS, Chang DR, et al. A catalytic DNA activated by a specific strain of bacterial pathogen[J]. Angew Chem Int Ed Engl, 2016, 55(7): 2431-2434.
doi: 10.1002/anie.201510125 URL |
[38] |
Damase TR, Ellington AD, Allen PB. Purification of single-stranded DNA by co-polymerization with acrylamide and electrophoresis[J]. BioTechniques, 2017, 62(6): 275-282.
doi: 10.2144/000114557 pmid: 28625157 |
[39] |
Cao XX, Li SH, Chen LC, et al. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus[J]. Nucleic Acids Res, 2009, 37(14): 4621-4628.
doi: 10.1093/nar/gkp489 URL |
[40] |
Martínez O, Ecochard V, Mahéo S, et al. Α, β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction[J]. PLoS One, 2011, 6(10): e25510.
doi: 10.1371/journal.pone.0025510 URL |
[41] | Navani NK, Wing KM, Li YF. In vitro selection of protein-binding DNA aptamers as ligands for biosensing applications[M]//. Rasooly A, Herold KE. Biosensors and Biodetection: Methods and protocols: Electrochemical and mechanical detectors, lateral flow and ligands for biosensors. Totowa, NJ: Humana Press. 2009: 399-415. |
[42] |
Walder RY, Hayes JR, Walder JA. Use of PCR primers containing a 3'-terminal ribose residue to prevent cross-contamination of amplified sequences[J]. Nucleic Acids Res, 1993, 21(18): 4339-4343.
pmid: 8414989 |
[43] |
Keefe AD, Pai S, Ellington A. Aptamers as therapeutics[J]. Nat Rev Drug Discov, 2010, 9(7): 537-550.
doi: 10.1038/nrd3141 pmid: 20592747 |
[44] |
Pagratis NC. Rapid preparation of single stranded DNA from PCR products by streptavidin induced electrophoretic mobility shift[J]. Nucleic Acids Res, 1996, 24(18): 3645-3646.
pmid: 8836196 |
[45] |
Wang T, Yin W, AlShamaileh H, et al. A detailed protein-SELEX protocol allowing visual assessments of individual steps for a high success rate[J]. Hum Gene Ther Methods, 2019, 30(1): 1-16.
doi: 10.1089/hgtb.2018.237 pmid: 30700146 |
[46] |
Dickman M, Hornby DP. Isolation of single-stranded DNA using denaturing DNA chromatography[J]. Anal Biochem, 2000, 284(1): 164-167.
pmid: 10933872 |
[47] |
Limbach PA, Crain PF, McCloskey JA. Characterization of oligonucleotides and nucleic acids by mass spectrometry[J]. Curr Opin Biotechnol, 1995, 6(1): 96-102.
doi: 10.1016/0958-1669(95)80015-8 URL |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[3] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[4] | JIANG Hai-rong, CUI Ruo-qi, WANG Yue BAI, Miao ZHANG, Ming-lu , REN Lian-hai. Isolation, Identification and Degradation Characteristics of Functional Bacteria for NH3 and H2S Degradation [J]. Biotechnology Bulletin, 2023, 39(9): 246-254. |
[5] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[6] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[7] | MA Jun-xiu, WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei. Screening and Identification of Broad-spectrum Antagonistic Bacterial Strains Against Vegetable Soft Rot Pathogen and Its Control Effects [J]. Biotechnology Bulletin, 2023, 39(7): 228-240. |
[8] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[9] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[10] | DONG Cong, GAO Qing-hua, WANG Yue, LUO Tong-yang, WANG Qing-qing. Increasing the Expression of FAD-dependent Glucose Dehydrogenase by Recombinant Pichia pastoris Using a Combined Strategy [J]. Biotechnology Bulletin, 2023, 39(6): 316-324. |
[11] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
[12] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[13] | SONG Hai-na, WU Xin-tong, YANG Lu-yu, GENG Xi-ning, ZHANG Hua-min, SONG Xiao-long. Selection and Validation of Reference Genes for RT-qPCR in Allium tuberosum Infected by Botrytis squamosa [J]. Biotechnology Bulletin, 2023, 39(3): 101-115. |
[14] | YU Shi-zhou, CAO Ling-gai, WANG Shi-ze, LIU Yong, BIAN Wen-jie, REN Xue-liang. Development Core SNP Markers for Tobacco Germplasm Genotyping [J]. Biotechnology Bulletin, 2023, 39(3): 89-100. |
[15] | MU De-tian, WAN Ling-yun, ZHANG Yao, WEI Shu-gen, LU Ying, FU Jin-e, TIAN Yi, PAN Li-mei, TANG Qi. House-keeping Genes Screening and Expression Patterns Analysis of Genes Involved in Alkaloid Biosynthesis in Uncaria rhynchophylla [J]. Biotechnology Bulletin, 2023, 39(2): 126-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||