Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (7): 266-276.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1522
Previous Articles Next Articles
YUAN Ye(), ZHOU Jia, QU Jian-hang(), ZHANG Bo-yuan, LUO Yu, LI Hai-feng
Received:
2022-12-16
Online:
2023-07-26
Published:
2023-08-17
Contact:
QU Jian-hang
E-mail:274607228@qq.com;qjh_bata@163.com
YUAN Ye, ZHOU Jia, QU Jian-hang, ZHANG Bo-yuan, LUO Yu, LI Hai-feng. Screening of an Efficient Denitrifying Phosphorus-accumulating Bacterium and Its Denitrification and Phosphorus Removal[J]. Biotechnology Bulletin, 2023, 39(7): 266-276.
因素代码 Code of factor | 因素 Factor | 水平Level | |||
---|---|---|---|---|---|
1 | 0 | 1 | |||
A | 温度 Temperature/℃ | 20 | 28 | 34 | |
B | pH | 7 | 8 | 9 | |
C | 初始磷含量Initial phosphorus content/(mg·L-1) | 10 | 15 | 20 |
Table 1 Three factors and three levels of denitrifying phosphorus-accumulating bacteria
因素代码 Code of factor | 因素 Factor | 水平Level | |||
---|---|---|---|---|---|
1 | 0 | 1 | |||
A | 温度 Temperature/℃ | 20 | 28 | 34 | |
B | pH | 7 | 8 | 9 | |
C | 初始磷含量Initial phosphorus content/(mg·L-1) | 10 | 15 | 20 |
Fig. 1 Phylogenetic tree based on the 16S rRNA genes of strain D4 Code in parentheses is GenBank accession number of strain.The number of branch nodes is bootstrap value(That of lower than 70 is not displayed). The data of the scale is the evolutionary distance
Fig. 3 Effects of carbon sources and carbon source concentration on the nitrogen and phosphorus removal efficiency of strain D4 Different lower letters indicate significant difference at P<0.05 level. The same below
因素Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | 显著性Significance |
---|---|---|---|---|---|
碳源Carbon source | 143.696 | 4 | 35.924 | 376.090 | 0.000** |
乙酸钠浓度Sodium acetate concentration | 43.381 | 4 | 10.845 | 583.658 | 0.000** |
接种量Vaccination percent | 0.064 | 4 | 0.016 | 0.535 | 0.714 |
初始磷含量Initial phosphorus content | 49.980 | 4 | 12.495 | 114.939 | 0.000** |
温度Temperature | 75.747 | 4 | 18.937 | 288.322 | 0.000** |
pH | 150.384 | 4 | 37.593 | 1492.194 | 0.000** |
Table 2 Significance analysis results
因素Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | 显著性Significance |
---|---|---|---|---|---|
碳源Carbon source | 143.696 | 4 | 35.924 | 376.090 | 0.000** |
乙酸钠浓度Sodium acetate concentration | 43.381 | 4 | 10.845 | 583.658 | 0.000** |
接种量Vaccination percent | 0.064 | 4 | 0.016 | 0.535 | 0.714 |
初始磷含量Initial phosphorus content | 49.980 | 4 | 12.495 | 114.939 | 0.000** |
温度Temperature | 75.747 | 4 | 18.937 | 288.322 | 0.000** |
pH | 150.384 | 4 | 37.593 | 1492.194 | 0.000** |
来源Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
模型 | 139.61 | 9 | 15.51 | 22.05 | 0.0002 | ** |
A | 15.89 | 1 | 15.89 | 22.59 | 0.0021 | ** |
B | 2.02 | 1 | 2.02 | 2.88 | 0.1337 | - |
C | 53.54 | 1 | 53.54 | 76.12 | < 0.0001 | ** |
AB | 2.52 | 1 | 2.52 | 3.58 | 0.1002 | - |
AC | 9.49 | 1 | 9.49 | 13.50 | 0.0079 | ** |
BC | 0.0038 | 1 | 0.0038 | 0.0055 | 0.9431 | - |
A2 | 13.90 | 1 | 13.90 | 19.75 | 0.0030 | ** |
B2 | 8.09 | 1 | 8.09 | 11.51 | 0.0116 | * |
C2 | 8.81 | 1 | 8.81 | 12.53 | 0.0095 | ** |
残值 | 4.92 | 7 | 0.7034 | |||
失拟项 | 3.68 | 3 | 1.23 | 3.96 | 0.1083 | - |
纯误差 | 1.24 | 4 | 0.3099 | |||
总计 | 144.54 | 16 |
Table 3 Analysis of variance of quadratic model
来源Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
模型 | 139.61 | 9 | 15.51 | 22.05 | 0.0002 | ** |
A | 15.89 | 1 | 15.89 | 22.59 | 0.0021 | ** |
B | 2.02 | 1 | 2.02 | 2.88 | 0.1337 | - |
C | 53.54 | 1 | 53.54 | 76.12 | < 0.0001 | ** |
AB | 2.52 | 1 | 2.52 | 3.58 | 0.1002 | - |
AC | 9.49 | 1 | 9.49 | 13.50 | 0.0079 | ** |
BC | 0.0038 | 1 | 0.0038 | 0.0055 | 0.9431 | - |
A2 | 13.90 | 1 | 13.90 | 19.75 | 0.0030 | ** |
B2 | 8.09 | 1 | 8.09 | 11.51 | 0.0116 | * |
C2 | 8.81 | 1 | 8.81 | 12.53 | 0.0095 | ** |
残值 | 4.92 | 7 | 0.7034 | |||
失拟项 | 3.68 | 3 | 1.23 | 3.96 | 0.1083 | - |
纯误差 | 1.24 | 4 | 0.3099 | |||
总计 | 144.54 | 16 |
Fig. 8 Response surface diagram of interaction of various factors on total phosphorus removal a: The interaction of temperature and pH; b: the interaction of temperature and initial phosphorus concentration; c: the interaction of pH and initial phosphorus concentration
[1] |
Raud M, Tenno T, Jõgi E, et al. Comparative study of semi-specific Aeromonas hydrophila and universal Pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters[J]. Enzyme Microb Technol, 2012, 50(4-5): 221-226.
doi: 10.1016/j.enzmictec.2012.01.003 URL |
[2] | 刘强. 游离氨耦联溶解氧调控高氮豆制品废水脱氮探究[J]. 水处理技术, 2020, 46(1): 79-83. |
Liu Q. Research on nitrogen removal from high nitrogen soybean products wastewater by free ammonia coupled with dissolved oxygen[J]. Technol Water Treat, 2020, 46(1): 79-83. | |
[3] |
Yang B, Chen GH, Chen GH. Submerged membrane bioreactor in treatment of simulated restaurant wastewater[J]. Sep Purif Technol, 2012, 88: 184-190.
doi: 10.1016/j.seppur.2011.12.026 URL |
[4] | 张凯宁. 好氧颗粒污泥处理柠檬酸生产废水的工艺研究[D]. 无锡: 江南大学, 2021. |
Zhang KN. Process for treating citric acid production wastewater by aerobic granular sludge[D]. Wuxi: Jiangnan University, 2021. | |
[5] |
Schindler DW, Hecky RE, Findlay DL, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment[J]. Proc Natl Acad Sci USA, 2008, 105(32): 11254-11258.
doi: 10.1073/pnas.0805108105 pmid: 18667696 |
[6] |
Rout PR, Bhunia P, Dash RR. Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal[J]. Bioresour Technol, 2017, 244: 484-495.
doi: 10.1016/j.biortech.2017.07.186 URL |
[7] |
Wan WJ, He DL, Xue ZJ. Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacterium Enterobacter cloacae HW-15[J]. Ecol Eng, 2017, 99: 199-208.
doi: 10.1016/j.ecoleng.2016.11.030 URL |
[8] | Kuba T, Smolders G, et al. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Water Sci Technol, 1993, 27(5/6): 241-252. |
[9] |
Wang B, Peng YZ, Guo YY, et al. Illumina miseq sequencing reveals the key microorganisms involved in partial nitritation followed by simultaneous sludge fermentation, denitrification and anammox process[J]. Bioresour Technol, 2016, 207: 118-125.
doi: 10.1016/j.biortech.2016.01.072 URL |
[10] |
Wang QK, He JZ. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5[J]. Water Res, 2020, 185: 116300.
doi: 10.1016/j.watres.2020.116300 URL |
[11] |
Xu HY, Jin R, Zhang C, et al. Isolation and identification of an aerobic denitrifying phosphorus removing bacteria and analysis of the factors influencing denitrification and phosphorus removal[J]. Water Sci Technol, 2018, 78(11): 2288-2296.
doi: 10.2166/wst.2018.514 URL |
[12] |
Li HK, Liu H, Zeng QQ, et al. Isolation and appraisal of a non-fermentative bacterium, Delftia tsuruhatensis, as denitrifying phosphate-accumulating organism and optimal growth conditions[J]. J Water Process Eng, 2020, 36: 101296.
doi: 10.1016/j.jwpe.2020.101296 URL |
[13] |
Li BT, Jing FY, Wu DS, et al. Simultaneous removal of nitrogen and phosphorus by a novel aerobic denitrifying phosphorus-accumulating bacterium, Pseudomonas stutzeri ADP-19[J]. Bioresour Technol, 2021, 321: 124445.
doi: 10.1016/j.biortech.2020.124445 URL |
[14] |
Chen HJ, Zhou WZ, Zhu SN, et al. Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification-aerobic denitrification[J]. Bioresour Technol, 2021, 322: 124507.
doi: 10.1016/j.biortech.2020.124507 URL |
[15] |
Roy S, Nirakar P, Yong NGH, et al. Denitrification kinetics indicates nitrous oxide uptake is unaffected by electron competition in Accumulibacter[J]. Water Res, 2021, 189: 116557.
doi: 10.1016/j.watres.2020.116557 URL |
[16] | 王春雷. 反硝化聚磷菌的筛选驯化及其脱氮除磷的效能研究[D]. 哈尔滨: 哈尔滨商业大学, 2020. |
Wang CL. Domestication and screening of denitrifying phosph ate accumulating bacteria and its efficiency of nitrogen and phosphorus removal[D]. Harbin: Harbin University of Commerce, 2020. | |
[17] |
Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water[J]. Appl Environ Microbiol, 1985, 49(1): 1-7.
doi: 10.1128/aem.49.1.1-7.1985 URL |
[18] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Handbook of identification of common bacterial systems[M]. Beijing: Science Press, 2001. | |
[19] |
Qu JH, Fu YH, Li XD, et al. Brevundimonas lutea sp. nov., isolated from lake sediment[J]. Int J Syst Evol Microbiol, 2019, 69(5): 1417-1422.
doi: 10.1099/ijsem.0.003330 URL |
[20] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[21] | Delegan Y, Valentovich L, Vetrova A, et al. Complete genome sequence of Gordonia sp. 135, a promising dibenzothiophene- and hydrocarbon-degrading strain[J]. Microbiol Resour Announc, 2020, 9(2): e01450-e01419. |
[22] | Istvan P, Ronen Z. Draft genome sequence of Gordonia sp. strain YY1, isolated from an explosive-contaminated environment[J]. Microbiol Resour Announc, 2020, 9(16): e00070-e00020. |
[23] |
Wang YY, Zhou S, Wang H, et al. Comparison of endogenous metabolism during long-term anaerobic starvation of nitrite/nitrate cultivated denitrifying phosphorus removal sludges[J]. Water Res, 2015, 68: 374-386.
pmid: 25462744 |
[24] |
Dai HL, Han T, Sun TS, et al. Nitrous oxide emission during denitrifying phosphorus removal process: a review on the mechanisms and influencing factors[J]. J Environ Manag, 2021, 278: 111561.
doi: 10.1016/j.jenvman.2020.111561 URL |
[25] |
Zhang MY, Pan LQ, Liu LP, et al. Phosphorus and nitrogen removal by a novel phosphate-accumulating organism, Arthrobacter sp. HHEP5 capable of heterotrophic nitrification-aerobic denitrification: safety assessment, removal characterization, mechanism exploration and wastewater treatment[J]. Bioresour Technol, 2020, 312: 123633.
doi: 10.1016/j.biortech.2020.123633 URL |
[26] |
Zhang Q, Chen X, Zhang ZY, et al. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment[J]. Bioresour Technol, 2020, 315: 123813.
doi: 10.1016/j.biortech.2020.123813 URL |
[27] | 孙理密, 翟纪学, 张德清, 等. 高氮磷有机食品废水处理工程实例分析[J]. 工业水处理, 2022, 42(1): 171-174. |
Sun LM, Zhai JX, Zhang DQ, et al. A treatment project case of organic food wastewater with high concentrations of nitrogen and phosphorus compounds[J]. Ind Water Treat, 2022, 42(1): 171-174. | |
[28] | 刘春晓, 朱守超, 陈华, 等. 气浮-ABR-生物接触氧化组合工艺处理豆制品废水[J]. 水处理技术, 2022, 48(1): 118-121, 125. |
Liu CX, Zhu SC, Chen H, et al. Treatment of soybean wastewater by a combined process of air flotation-ABR-biological contact oxidation[J]. Technol Water Treat, 2022, 48(1): 118-121, 125. | |
[29] |
聂毅磊, 贾纬, 曾艳兵, 等. 两株好氧反硝化聚磷菌的筛选、鉴定及水质净化研究[J]. 生物技术通报, 2017, 33(3): 116-121.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.03.017 URL |
Nie YL, Jia W, Zeng YB, et al. Screening and identification of two aerobic denitrifying phosphorusaccumulating strains, and denitrifying biological phosphorus removal[J]. Biotechnol Bull, 2017, 33(3): 116-121. | |
[30] | 靳茹. 高效好氧反硝化聚磷菌的分离鉴定及脱氮除磷影响因素分析[D]. 太原: 太原科技大学, 2018. |
Jin R. Isolation and identification of efficiently aerobic denitrifying phosphorus removing bacteria and analysis of the factors influencing denitrification and phosphorus removal[D]. Taiyuan: Taiyuan University of Science and Technology, 2018. |
[1] | ZHANG Yu-hong, DONG Xian-bo, LIU Xiang-yu, XU Jia-qi, XU Zi-ling. Isolation of a Novel Heterotrophic Nitrification-Aerobic Denitrification Bacterium Paracoccus sp. QD-19 and Its Characterization of Removing Nitrogen [J]. Biotechnology Bulletin, 2023, 39(3): 301-310. |
[2] | WANG Ya-jun, SI Yun-mei. Screening and Degradation Characteristics of a CP-7 Strain of Dephosphorization Bacteria [J]. Biotechnology Bulletin, 2022, 38(7): 258-268. |
[3] | WEI Chang, QI Xiu-xiu, WU Yue, LIU Xiao-dan, WANG Yi, JIANG Ying, LIU Hai-tao. Screening,Identification,Condition Optimization and Application of Efficient Phosphate Solubilizing Bacteria in Sandy Fluvo Aquic Soil [J]. Biotechnology Bulletin, 2021, 37(4): 85-95. |
[4] | SUN Kai, CHEN Zheng-jie, WANG Deng-yang, SHU Ru-yu, WU Ji, WEI Fan. Removal of Bisphenol A in Wastewater by Immobilized Laccase [J]. Biotechnology Bulletin, 2020, 36(12): 188-198. |
[5] | LIU Chang-rong, ZHANG Feng-li, LI Zhi-yong. Immobilization of Marine Urease and Its Utilization in the Treatment of Urea Wastewater [J]. Biotechnology Bulletin, 2019, 35(9): 75-82. |
[6] | ZHOU Heng, JIANG Yun, XU Ye-xiang, QIAN Sheng-hui, MIAO Li. Research on Quorum Sensing Inhibitory Activity and Culture Condition of a Marine Streptomyces parvulus [J]. Biotechnology Bulletin, 2019, 35(10): 137-143. |
[7] | GUO Jun, WU Ai-lian, YAN Min, PANG Jin-mei, JIAO Xiao-yan. Fermentation Conditions of Antagonistic Bacterium Pb-4 Against Fusarium Wilt Using Soybean Processing Wastewater [J]. Biotechnology Bulletin, 2017, 33(8): 167-173. |
[8] | WU Bing-qi, LIU Shu-jie, CHEN Fu-ming, ZHOU Chu-ying. Screening of Marine Crude Oil-degrading Bacteria and Construction of Microbial Consortium [J]. Biotechnology Bulletin, 2016, 32(8): 184-193. |
[9] | Peng Yinhui, Cai Xiaohui, Xiong Xiangying, Liu Xujia, Huang Guoqiang. Optimization of Prokaryotic Expression of Antibacterial Peptide hyastatin Gene in Scylla paramamosain [J]. Biotechnology Bulletin, 2015, 31(7): 138-142. |
[10] | Wang Shuo, Shi Wenxin, Wang Yan, Yu Shuili, Li Ji. Biological Wastewater Treatment at Low Temperatures:Advances and Future Trends [J]. Biotechnology Bulletin, 2015, 31(5): 48-53. |
[11] | Huang Juan, Wang Hehua, Zhang Xiaoji, Pan Boyu, Chen Xiaoping, Wu Yuanxin. Expression and Activity Assay of Human Aldehyde Dehydrogenase2 in Escherichia coli [J]. Biotechnology Bulletin, 2014, 0(12): 201-206. |
[12] | Dong Yanyan Hu Wenge Lu Lipeng Chen Dengwen Yang Di Wang Yanping Han Jing. Establishment and Optimization of RAPD-PCR Reaction System and Primers Screening from Perca fluviatilis [J]. Biotechnology Bulletin, 2013, 0(9): 114-118. |
[13] | Zhao Cuijuan, Song Wenjun, Zhu Gaoxiong, Wei Jiping, Li Bozhi, Zhang Jun. Development of Wastewater Treatment Using Ammoniadegrading Bacteria [J]. Biotechnology Bulletin, 2013, 0(2): 31-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||