Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (3): 62-74.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0938
Previous Articles Next Articles
LIU Rui1,2(), ZHAO Jian-long2, XIE Bing-yan2, LI Hui-xia1(), MAO Zhen-chuan2()
Received:
2023-10-06
Online:
2024-03-26
Published:
2024-04-08
Contact:
LI Hui-xia, MAO Zhen-chuan
E-mail:18404983798@163.com;lihx@gsau.edu.cn;maozhenchuan@caas.cn
LIU Rui, ZHAO Jian-long, XIE Bing-yan, LI Hui-xia, MAO Zhen-chuan. Giant Cells Induced by Root-knot Nematodes and Its Formation Mechanisms[J]. Biotechnology Bulletin, 2024, 40(3): 62-74.
效应蛋白Effector | 靶标线虫Target nematode | 功能(巨型细胞相关)Function(Giant cell correlation) | 参考文献Reference |
---|---|---|---|
Mj-pel-1 | 爪哇根结线虫 | 参与细胞壁:对果胶有高活性,侵染初期起重要作用 | [ |
Mi-CRT | 南方根结线虫 | 细胞骨架:取食位点周围的巨型细胞中聚集,影响线虫寄生 | [ |
MiPFN3 | 南方根结线虫 | 细胞骨架:调节巨型细胞内肌动蛋白的多聚化 | [ |
Mi8D05/Msp9 | 北方根结线虫 南方根结线虫 | 物质运输:调节巨型细胞内溶质和水分子的运输 | [ |
MJ-NULG1a | 爪哇根结线虫 | 细胞核:定位在巨型细胞核中,影响线虫的寄生 | [ |
MiEFF1 | 南方根结线虫 | 细胞核:定位在巨型细胞核中,影响线虫的寄生 | [ |
MiEFF18 | 南方根结线虫 | 细胞核:诱导植物根细胞再分化为巨型细胞 | [ |
Mi2G02 | 南方根结线虫 | 细胞核:参与调控根长和线虫取食细胞的发育 | [ |
CM-1/CM-2 | 南方根结线虫 爪哇根结线虫 | 激素调节:参与巨型细胞的分化和取食位点的形成,MjCM-1减少吲哚乙酸的合成影响细胞发育 | [ |
FAR-1 | 爪哇根结线虫 南方根结线虫 | 细胞代谢:促进巨型细胞和线虫发育 | [ |
Mi-SBP-1 | 南方根结线虫 | 细胞代谢:参与巨型细胞中脂酸的合成 | [ |
MeMSP1 | 象耳豆根结线虫 | 细胞代谢:定位在巨型细胞中,影响谷胱甘肽的积累,有利于线虫寄生 | [ |
16D10/Msp16 | 北方根结线虫 南方根结线虫 | 转录调控:诱导巨型细胞和取食位点形成中发挥作用 | [ |
Table1 Reported relevant giant cell-associated effectors in root-knot nematodes
效应蛋白Effector | 靶标线虫Target nematode | 功能(巨型细胞相关)Function(Giant cell correlation) | 参考文献Reference |
---|---|---|---|
Mj-pel-1 | 爪哇根结线虫 | 参与细胞壁:对果胶有高活性,侵染初期起重要作用 | [ |
Mi-CRT | 南方根结线虫 | 细胞骨架:取食位点周围的巨型细胞中聚集,影响线虫寄生 | [ |
MiPFN3 | 南方根结线虫 | 细胞骨架:调节巨型细胞内肌动蛋白的多聚化 | [ |
Mi8D05/Msp9 | 北方根结线虫 南方根结线虫 | 物质运输:调节巨型细胞内溶质和水分子的运输 | [ |
MJ-NULG1a | 爪哇根结线虫 | 细胞核:定位在巨型细胞核中,影响线虫的寄生 | [ |
MiEFF1 | 南方根结线虫 | 细胞核:定位在巨型细胞核中,影响线虫的寄生 | [ |
MiEFF18 | 南方根结线虫 | 细胞核:诱导植物根细胞再分化为巨型细胞 | [ |
Mi2G02 | 南方根结线虫 | 细胞核:参与调控根长和线虫取食细胞的发育 | [ |
CM-1/CM-2 | 南方根结线虫 爪哇根结线虫 | 激素调节:参与巨型细胞的分化和取食位点的形成,MjCM-1减少吲哚乙酸的合成影响细胞发育 | [ |
FAR-1 | 爪哇根结线虫 南方根结线虫 | 细胞代谢:促进巨型细胞和线虫发育 | [ |
Mi-SBP-1 | 南方根结线虫 | 细胞代谢:参与巨型细胞中脂酸的合成 | [ |
MeMSP1 | 象耳豆根结线虫 | 细胞代谢:定位在巨型细胞中,影响谷胱甘肽的积累,有利于线虫寄生 | [ |
16D10/Msp16 | 北方根结线虫 南方根结线虫 | 转录调控:诱导巨型细胞和取食位点形成中发挥作用 | [ |
[1] | 金娜, 陈永攀, 刘倩, 等. 我国蔬菜根结线虫发生、致害和绿色防控研究进展[J]. 植物保护学报, 2022, 49(1): 424-438. |
Jin N, Chen YP, Liu Q, et al. Research progresses in occurrence, diagnoses, pathogenic mechanisms and integrated management of vegetable root-knot nematodes in China[J]. J Plant Prot, 2022, 49(1): 424-438. | |
[2] |
Forghani F, Hajihassani A. Recent advances in the development of environmentally benign treatments to control root-knot nematodes[J]. Front Plant Sci, 2020, 11: 1125.
doi: 10.3389/fpls.2020.01125 pmid: 32793271 |
[3] |
Jones JT, Haegeman A, Danchin EGJ, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Mol Plant Pathol, 2013, 14(9): 946-961.
doi: 10.1111/mpp.12057 pmid: 23809086 |
[4] | 彭德良. 植物线虫病害:我国粮食安全面临的重大挑战[J]. 生物技术通报, 2021, 37(7): 1-2. |
Peng DL. Plant nematode diseases: serious challenges to China's food security[J]. Biotechnol Bull, 2021, 37(7): 1-2. | |
[5] | 杨芳, 徐幸, 郭荣, 等. 中国北方稻田及其周边环境中根结线虫种类鉴定[J]. 西北农林科技大学学报:自然科学版, 2024, 52(1): 1-11. |
Yang F, Xu X, Guo R, et al. Identification of root-knot nematode species from paddy field and surrounding environment in northern China[J]. Journal of Northwest A&F University Natural Science Edition, 2024, 52(1): 1-11. | |
[6] |
Khan A, Khan A, Ali A, et al. Root-knot nematodes(Meloidogyne spp.): biology, plant-nematode interactions and their environmentally benign management strategies[J]. Gesunde Pflanz, 2023, 75(6): 2187-2205.
doi: 10.1007/s10343-023-00886-5 |
[7] |
Abad P, Gouzy J, Aury JM, et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J]. Nat Biotechnol, 2008, 26(8): 909-915.
doi: 10.1038/nbt.1482 |
[8] | Moens M, Perry RN, Starr JL. Meloidogyne species - a diverse group of novel and important plant parasites[M]//Root-knot nematodes. UK: CABI, 2009: 1-17. |
[9] |
Sijmons PC, Atkinson HJ, Wyss U. Parasitic strategies of root nematodes and associated host cell responses[J]. Annu Rev Phytopathol, 1994, 32: 235-259.
doi: 10.1146/phyto.1994.32.issue-1 URL |
[10] | Escobar C, Barcala M, Cabrera J, et al. Overview of root-knot nematodes and giant cells[J]. Adv Bot Res, 2015, 73: 1-32. |
[11] |
Holbein J, Franke RB, Marhavý P, et al. Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes[J]. Plant J, 2019, 100(2): 221-236.
doi: 10.1111/tpj.14459 |
[12] |
Bird AF. The ultrastructure and histochemistry of a nematode-induced giant cell[J]. J Biophys Biochem Cytol, 1961, 11(3): 701-715.
doi: 10.1083/jcb.11.3.701 URL |
[13] |
Huang CS, Maggenti AR. Wall modifications in developing giant cells of Vicia faba and Cucumis sativus induced by root knot nematode, Meloidogyne javanica[J]. Phytopathology, 1969, 59(7): 931-937.
pmid: 5799564 |
[14] |
Caillaud MC, Dubreuil G, Quentin M, et al. Root-knot nematodes manipulate plant cell functions during a compatible interaction[J]. J Plant Physiol, 2008, 165(1): 104-113.
doi: 10.1016/j.jplph.2007.05.007 URL |
[15] |
Rodiuc N, Vieira P, Banora MY, et al. On the track of transfer cell formation by specialized plant-parasitic nematodes[J]. Front Plant Sci, 2014, 5: 160.
doi: 10.3389/fpls.2014.00160 pmid: 24847336 |
[16] |
de Almeida Engler J, Van Poucke K, Karimi M, et al. Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots[J]. Plant J, 2004, 38(1): 12-26.
doi: 10.1111/j.1365-313X.2004.02019.x pmid: 15053756 |
[17] | Jones MGK, Goto DB. Root-knot nematodes and giant cells[M]// Genomics and Molecular Genetics of Plant-Nematode Interactions. Dordrecht: Springer, 2011: 83-100. |
[18] |
Jones MGK, Northcote DH. Multinucleate transfer cells induced in coleus roots by the root-knot nematode, Meloidogyne arenar-ia[J]. Protoplasma, 1972, 75(4): 381-395.
doi: 10.1007/BF01282117 URL |
[19] | Berg RH, Fester T, Taylor CG. Development of the root-knot nematode feeding cell[M]// Cell Biology of Plant Nematode Parasitism. Berlin, Heidelberg: Springer, 2009: 115-152. |
[20] |
Jones MGK, Novacky A, Dropkin VH. Transmembrane potentials of parenchyma cells and nematode-induced transfer cells[J]. Protoplasma, 1975, 85(1): 15-37.
doi: 10.1007/BF01567756 URL |
[21] |
Paulson RE, Webster JM. Giant cell formation in tomato roots caused by Meloidogyne incognita and Meloidogyne hapla(Nematoda)infection. A light and electron microscope study[J]. Can J Bot, 1970, 48(2): 271-276.
doi: 10.1139/b70-041 URL |
[22] |
Jones MGK, Gunning BES. Transfer cells and nematode induced giant cells in Helianthemum[J]. Protoplasma, 1976, 87(1): 273-279.
doi: 10.1007/BF01623973 URL |
[23] |
Suzuki R, Yamada M, Higaki T, et al. PUCHI regulates giant cell morphology during root-knot nematode infection in Arabidopsis thaliana[J]. Front Plant Sci, 2021, 12: 755610.
doi: 10.3389/fpls.2021.755610 URL |
[24] |
Barcala M, García A, Cabrera J, et al. Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells[J]. Plant J, 2010, 61(4): 698-712.
doi: 10.1111/tpj.2010.61.issue-4 URL |
[25] | Laura C H. Analysis of cell wall synthesis genes in feeding cells formed by root-knot nematodes[D]. Raleigh: North Carolina State University, 2008. |
[26] |
Smith RC, Fry SC. Endotransglycosylation of xyloglucans in plant cell suspension cultures[J]. Biochem J, 1991, 279: 529-535.
doi: 10.1042/bj2790529 URL |
[27] |
Nishitani K, Tominaga R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule[J]. J Biol Chem, 1992, 267(29): 21058-21064.
pmid: 1400418 |
[28] |
Baldacci-Cresp F, Behr M, Kohler A, et al. Molecular changes concomitant with vascular system development in mature galls induced by root-knot nematodes in the model tree host Populus tremula×P. alba[J]. Int J Mol Sci, 2020, 21(2): 406.
doi: 10.3390/ijms21020406 URL |
[29] |
Jammes F, Lecomte P, de Almeida-Engler J, et al. Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis[J]. Plant J, 2005, 44(3): 447-458.
doi: 10.1111/tpj.2005.44.issue-3 URL |
[30] |
Kende H, Bradford K, Brummell D, et al. Nomenclature for members of the expansin superfamily of genes and proteins[J]. Plant Mol Biol, 2004, 55(3): 311-314.
doi: 10.1007/s11103-004-0158-6 pmid: 15604683 |
[31] |
Kost B, Spielhofer P, Chua NH. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes[J]. Plant J, 1998, 16(3): 393-401.
doi: 10.1046/j.1365-313x.1998.00304.x pmid: 9881160 |
[32] |
Caillaud MC, Lecomte P, Jammes F, et al. MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis[J]. Plant Cell, 2008, 20(2): 423-437.
doi: 10.1105/tpc.107.057422 URL |
[33] | de Almeida Engler J, Favery B. The plant cytoskeleton remodelling in nematode induced feeding sites[M]// Genomics and Molecular Genetics of Plant-Nematode Interactions. Dordrecht: Springer, 2011: 369-393. |
[34] |
Staiger CJ, Blanchoin L. Actin dynamics: old friends with new stories[J]. Curr Opin Plant Biol, 2006, 9(6): 554-562.
doi: 10.1016/j.pbi.2006.09.013 pmid: 17011229 |
[35] |
Clément M, Ketelaar T, Rodiuc N, et al. Actin-depolymerizing factor2-mediated actin dynamics are essential for root-knot nematode infection of Arabidopsis[J]. Plant Cell, 2009, 21(9): 2963-2979.
doi: 10.1105/tpc.109.069104 URL |
[36] |
Bird AF. Quantitative studies on the growth of syncytia induced in plants by root knot nematodes[J]. Int J Parasitol, 1972, 2(1): 157-170.
doi: 10.1016/0020-7519(72)90043-4 URL |
[37] |
Hammes UZ, Schachtman DP, Berg RH, et al. Nematode-induced changes of transporter gene expression in Arabidopsis roots[J]. Mol Plant Microbe Interact, 2005, 18(12): 1247-1257.
doi: 10.1094/MPMI-18-1247 URL |
[38] |
Opperman CH, Taylor CG, Conkling MA. Root-knot nematode—directed expression of a plant root—specific gene[J]. Science, 1994, 263(5144): 221-223.
doi: 10.1126/science.263.5144.221 pmid: 17839183 |
[39] | Gheysen G, Mitchum MG. Molecular insights in the susceptible plant response to nematode infection[M]//Plant Cell Monographs. Berlin, Heidelberg: Springer, 2008, 15:45-81. |
[40] |
Starr JL. Dynamics of the nuclear complement of giant cells induced by Meloidogyne incognita[J]. J Nematol, 1993, 25(3): 416-421.
pmid: 19279788 |
[41] |
Jones MG, Payne HL. Early stages of nematode-induced giant-cell formation in roots of Impatiens balsamina[J]. J Nematol, 1978, 10(1): 70-84.
pmid: 19305816 |
[42] |
Niebel A, de Almeida Engler J, Hemerly A, et al. Induction of cdc2a and cyc1At expression in Arabidopsis thaliana during early phases of nematode-induced feeding cell formation[J]. Plant J, 1996, 10(6): 1037-1043.
pmid: 9011085 |
[43] |
de Almeida Engler J, De Vleesschauwer V, Burssens S, et al. Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia[J]. Plant Cell, 1999, 11(5): 793-808.
doi: 10.1105/tpc.11.5.793 pmid: 10330466 |
[44] |
Favery B, Complainville A, Vinardell JM, et al. The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula[J]. Mol Plant Microbe Interact, 2002, 15(10): 1008-1013.
doi: 10.1094/MPMI.2002.15.10.1008 URL |
[45] |
Verkest A, Manes CL, Vercruysse S, et al. The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes[J]. Plant Cell, 2005, 17(6): 1723-1736.
pmid: 15863515 |
[46] |
Van de Cappelle E, Plovie E, Kyndt T, et al. AtCDKA;1 silencing in Arabidopsis thaliana reduces reproduction of sedentary plant-parasitic nematodes[J]. Plant Biotechnol J, 2008, 6(8): 749-757.
doi: 10.1111/j.1467-7652.2008.00355.x pmid: 18554267 |
[47] |
Vieira P, Escudero C, Rodiuc N, et al. Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion[J]. New Phytol, 2013, 199(2): 505-519.
doi: 10.1111/nph.12255 pmid: 23574394 |
[48] |
Vieira P, De Clercq A, Stals H, et al. The cyclin-dependent kinase inhibitor KRP6 induces mitosis and impairs cytokinesis in giant cells induced by plant-parasitic nematodes in Arabidopsis[J]. Plant Cell, 2014, 26(6): 2633-2647.
doi: 10.1105/tpc.114.126425 URL |
[49] |
de Almeida Engler J, Gheysen G. Nematode-induced endoreduplication in plant host cells: why and how?[J]. Mol Plant Microbe Interact, 2013, 26(1): 17-24.
doi: 10.1094/MPMI-05-12-0128-CR URL |
[50] |
Paganelli L, Caillaud MC, Quentin M, et al. Three BUB1 and BUBR1/MAD3-related spindle assembly checkpoint proteins are required for accurate mitosis in Arabidopsis[J]. New Phytol, 2015, 205(1): 202-215.
doi: 10.1111/nph.13073 pmid: 25262777 |
[51] |
Fuller VL, Lilley CJ, Atkinson HJ, et al. Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii[J]. Mol Plant Pathol, 2007, 8(5): 595-609.
doi: 10.1111/mpp.2007.8.issue-5 URL |
[52] | 许立鹤. 水稻地上部分蔗糖向拟禾本科根结线虫取食位点运输的机制研究[D]. 武汉: 华中农业大学, 2021. |
Xu LH. Mechanisms of sucrose supply from aboveground parts of rice to feeding sites of Meloidogyne graminicola[D]. Wuhan: Huazhong Agricultural University, 2021. | |
[53] |
Hofmann J, Grundler F. How do nematodes get their sweets? Solute supply to sedentary plant-parasitic nematodes[J]. Nematology, 2007, 9(4): 451-458.
doi: 10.1163/156854107781487305 URL |
[54] |
Gheysen G, Mitchum MG. Phytoparasitic nematode control of plant hormone pathways[J]. Plant Physiol, 2019, 179(4): 1212-1226.
doi: 10.1104/pp.18.01067 pmid: 30397024 |
[55] |
Erb M, Meldau S, Howe GA. Role of phytohormones in insect-specific plant reactions[J]. Trends Plant Sci, 2012, 17(5): 250-259.
doi: 10.1016/j.tplants.2012.01.003 pmid: 22305233 |
[56] |
Tooker JF, Helms AM. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit[J]. J Chem Ecol, 2014, 40(7): 742-753.
doi: 10.1007/s10886-014-0457-6 pmid: 25027764 |
[57] |
黄文坤, 于敬文, 贾建平, 等. 植物激素对植物寄生线虫取食位点建立与发育的影响[J]. 生物技术通报, 2021, 37(7): 56-64.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0332 |
Huang WK, Yu JW, Jia JP, et al. Effects of plant hormones on the establishment and development of plant parasitic nematodes’ feeding sites[J]. Biotechnol Bull, 2021, 37(7): 56-64. | |
[58] |
Hutangura P, Mathesius U, Jones MGK, et al. Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway[J]. Funct Plant Biol, 1999, 26(3): 221-231.
doi: 10.1071/PP98157 URL |
[59] |
Cabrera J, Barcala M, García A, et al. Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs[J]. New Phytol, 2016, 209(4): 1625-1640.
doi: 10.1111/nph.13735 pmid: 26542733 |
[60] |
Cabrera J, Fenoll C, Escobar C. Genes co-regulated with LBD16 in nematode feeding sites inferred from in silico analysis show similarities to regulatory circuits mediated by the auxin/cytokinin balance in Arabidopsis[J]. Plant Signal Behav, 2015, 10(3): e990825.
doi: 10.4161/15592324.2014.990825 URL |
[61] |
Bird AF, Loveys BR. The involvement of cytokinins in a host-parasite relationship between the tomato(Lycopersicon esculentum)and a nematode(Meloidogyne javanica)[J]. Parasitology, 1980, 80(3): 497-505.
doi: 10.1017/S0031182000000962 URL |
[62] |
Lohar DP, Schaff JE, Laskey JG, et al. Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses[J]. Plant J, 2004, 38(2): 203-214.
pmid: 15078325 |
[63] |
Cabrera J, Díaz-Manzano FE, Sanchez M, et al. A role for lateral organ boundaries-domain 16 during the interaction Arabidop-sis-Meloidogyne spp. provides a molecular link between lateral root and root-knot nematode feeding site development[J]. New Phytol, 2014, 203(2): 632-645.
doi: 10.1111/nph.12826 pmid: 24803293 |
[64] |
Giazer I, Orion D, Apelbaum A. Interrelationships between ethylene production, gall formation, and root-knot nematode development in tomato plants infected with Meloidogyne javanica[J]. J Nematol, 1983, 15(4): 539-544.
pmid: 19295844 |
[65] |
Nahar K, Kyndt T, et al. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice[J]. Plant Physiol, 2011, 157(1): 305-316.
doi: 10.1104/pp.111.177576 pmid: 21715672 |
[66] |
Fudali SL, Wang CL, Williamson VM. Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla[J]. Mol Plant Microbe Interact, 2013, 26(1): 75-86.
doi: 10.1094/MPMI-05-12-0107-R URL |
[67] |
Mantelin S, Bhattarai KK, et al. Mi-1-mediated resistance to Meloi-dogyne incognita in tomato may not rely on ethylene but hormone perception through ETR3 participates in limiting nematode infection in a susceptible host[J]. PLoS One, 2013, 8(5): e63281.
doi: 10.1371/journal.pone.0063281 URL |
[68] |
Shukla N, Yadav R, et al. Transcriptome analysis of root-knot nema-tode(Meloidogyne incognita)-infected tomato(Solanum lycoper-sicum)roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses[J]. Mol Plant Pathol, 2018, 19(3): 615-633.
doi: 10.1111/mpp.12547 pmid: 28220591 |
[69] |
Ji HL, Gheysen G, Denil S, et al. Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminico-la in rice roots[J]. J Exp Bot, 2013, 64(12): 3885-3898.
doi: 10.1093/jxb/ert219 URL |
[70] |
Priya DB, Somasekhar N, Prasad J, et al. Transgenic tobacco plants constitutively expressing Arabidopsis NPR1 show enhanced resistance to root-knot nematode, Meloidogyne incognita[J]. BMC Res Notes, 2011, 4: 231.
doi: 10.1186/1756-0500-4-231 |
[71] |
Youssef RM, MacDonald MH, Brewer EP, et al. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes[J]. BMC Plant Biol, 2013, 13: 67.
doi: 10.1186/1471-2229-13-67 pmid: 23617694 |
[72] |
Favery B, Quentin M, Jaubert-Possamai S, et al. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells[J]. J Insect Physiol, 2016, 84: 60-69.
doi: S0022-1910(15)00161-4 pmid: 26211599 |
[73] |
Chakraborty N, Basak J. Exogenous application of methyl jasmonate induces defense response and develops tolerance against mungbean yellow mosaic India virus in Vigna mungo[J]. Funct Plant Biol, 2018, 46(1): 69-81.
doi: 10.1071/FP18168 pmid: 30939259 |
[74] |
Nahar K, et al. Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway[J]. Mol Plant Microbe Interact, 2013, 26(1): 106-115.
doi: 10.1094/MPMI-05-12-0108-FI URL |
[75] |
Chen SY, Lang P, Chronis D, et al. In planta processing and glycosylation of a nematode clavata3/endosperm surrounding region-like effector and its interaction with a host clavata2-like receptor to promote parasitism[J]. Plant Physiol, 2015, 167(1): 262-272.
doi: 10.1104/pp.114.251637 pmid: 25416475 |
[76] |
Cabrera J, Barcala M, Fenoll C, et al. Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabi-dopsis focused on auxin and ethylene signaling[J]. Front Plant Sci, 2014, 5: 107.
doi: 10.3389/fpls.2014.00107 pmid: 24715895 |
[77] | 姚珂, 郑经武, 黄文坤, 等. 植物寄生线虫效应蛋白调控寄主防卫反应分子机制研究进展[J]. 植物病理学报, 2020, 50(5): 517-530. |
Yao K, Zheng JW, Huang WK, et al. Research progress on the regulation of host defense by plant parasitic nematode effectors[J]. Acta Phytopathol Sin, 2020, 50(5): 517-530. | |
[78] |
Haegeman A, Mantelin S, Jones JT, et al. Functional roles of effectors of plant-parasitic nematodes[J]. Gene, 2012, 492(1): 19-31.
doi: 10.1016/j.gene.2011.10.040 pmid: 22062000 |
[79] |
Yamaguchi YL, Suzuki R, Cabrera J, et al. Root-knot and cyst nematodes activate procambium-associated genes in Arabidopsis roots[J]. Front Plant Sci, 2017, 8: 1195.
doi: 10.3389/fpls.2017.01195 pmid: 28747918 |
[80] |
Schaff JE, Nielsen DM, Smith CP, et al. Comprehensive transcriptome profiling in tomato reveals a role for glycosyltransferase in Mi-mediated nematode resistance[J]. Plant Physiol, 2007, 144(2): 1079-1092.
doi: 10.1104/pp.106.090241 pmid: 17434994 |
[81] |
Portillo M, Lindsey K, Casson S, et al. Isolation of RNA from laser-capture-microdissected giant cells at early differentiation stages suitable for differential transcriptome analysis[J]. Mol Plant Pathol, 2009, 10(4): 523-535.
doi: 10.1111/j.1364-3703.2009.00552.x pmid: 19523105 |
[82] |
Das S, Ehlers JD, Close TJ, et al. Transcriptional profiling of root-knot nematode induced feeding sites in cowpea(Vigna unguicula-ta L. Walp.)using a soybean genome array[J]. BMC Genomics, 2010, 11: 480.
doi: 10.1186/1471-2164-11-480 |
[83] |
Kyndt T, Denil S, Haegeman A, et al. Transcriptional reprogramming by root knot and migratory nematode infection in rice[J]. New Phytol, 2012, 196(3): 887-900.
doi: 10.1111/j.1469-8137.2012.04311.x pmid: 22985291 |
[84] |
Sato K, Uehara T, Holbein J, et al. Transcriptomic analysis of resistant and susceptible responses in a new model root-knot nematode infection system using Solanum torvum and Meloidogyne arenar-ia[J]. Front Plant Sci, 2021, 12: 680151.
doi: 10.3389/fpls.2021.680151 URL |
[85] |
Zhu YC, Yuan GP, Zhao RZ, et al. Comparative transcriptome analysis reveals differential gene expression in resistant and susceptible watermelon varieties in response to Meloidogyne incognita[J]. Life, 2022, 12(7): 1003.
doi: 10.3390/life12071003 URL |
[86] |
Djian-Caporalino C, Pijarowski L, Januel A, et al. Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in in pepper(Capsicum annuum L.)[J]. Theor Appl Genet, 1999, 99(3/4): 496-502.
doi: 10.1007/s001220051262 URL |
[87] |
de Souza-Sobrinho F, Maluf WR, Gomes LAA, et al. Inheritance of resistance to Meloidogyne incognita race 2 in the hot pepper cultivar Carolina Cayenne(Capsicum annuum L.)[J]. Genet Mol Res, 2002, 1(3): 271-279.
pmid: 14963835 |
[88] |
Melillo MT, Leonetti P, Bongiovanni M, et al. Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato-root-knot nematode interactions[J]. New Phytol, 2006, 170(3): 501-512.
doi: 10.1111/j.1469-8137.2006.01724.x pmid: 16626472 |
[89] |
Damiani I, Baldacci-Cresp F, Hopkins J, et al. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes[J]. New Phytol, 2012, 194(2): 511-522.
doi: 10.1111/j.1469-8137.2011.04046.x pmid: 22360638 |
[90] |
Bellafiore S, Shen ZX, et al. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential[J]. PLoS Pathog, 2008, 4(10): e1000192.
doi: 10.1371/journal.ppat.1000192 URL |
[91] |
Vieira P, Gleason C. Plant-parasitic nematode effectors - insights into their diversity and new tools for their identification[J]. Curr Opin Plant Biol, 2019, 50: 37-43.
doi: S1369-5266(18)30113-4 pmid: 30921686 |
[92] |
Toruño TY, Stergiopoulos I, Coaker G. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners[J]. Annu Rev Phytopathol, 2016, 54: 419-441.
doi: 10.1146/annurev-phyto-080615-100204 pmid: 27359369 |
[93] |
Mejias J, Truong NM, Abad P, et al. Plant proteins and processes targeted by parasitic nematode effectors[J]. Front Plant Sci, 2019, 10: 970.
doi: 10.3389/fpls.2019.00970 pmid: 31417587 |
[94] |
Jagdale S, Rao U, Giri AP. Effectors of root-knot nematodes: an arsenal for successful parasitism[J]. Front Plant Sci, 2021, 12: 800030.
doi: 10.3389/fpls.2021.800030 URL |
[95] |
Quentin M, Abad P, Favery B. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells[J]. Front Plant Sci, 2013, 4: 53.
doi: 10.3389/fpls.2013.00053 pmid: 23493679 |
[96] |
Doyle EA, Lambert KN. Cloning and characterization of an esophageal-gland-specific pectate lyase from the root-knot nematode Meloidogyne javanica[J]. Mol Plant Microbe Interact, 2002, 15(6): 549-556.
doi: 10.1094/MPMI.2002.15.6.549 URL |
[97] |
Jaubert S, Milac AL, Petrescu AJ, et al. In planta secretion of a calreticulin by migratory and sedentary stages of root-knot nematode[J]. Mol Plant Microbe Interact, 2005, 18(12): 1277-1284.
doi: 10.1094/MPMI-18-1277 URL |
[98] |
Leelarasamee N, Zhang L, Gleason C. The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism[J]. PLoS Pathog, 2018, 14(3): e1006947.
doi: 10.1371/journal.ppat.1006947 URL |
[99] |
Xue BY, Hamamouch N, Li CY, et al. The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots[J]. Phytopathology, 2013, 103(2): 175-181.
doi: 10.1094/PHYTO-07-12-0173-R URL |
[100] |
Lin BR, Zhuo K, Wu P, et al. A novel effector protein, MJ-NULG1a, targeted to giant cell nuclei plays a role in Meloidogyne javanica parasitism[J]. Mol Plant Microbe Interact, 2013, 26(1): 55-66.
doi: 10.1094/MPMI-05-12-0114-FI URL |
[101] |
Jaouannet M, Perfus-Barbeoch L, Deleury E, et al. A root-knot nematode-secreted protein is injected into giant cells and targeted to the nuclei[J]. New Phytol, 2012, 194(4): 924-931.
doi: 10.1111/j.1469-8137.2012.04164.x pmid: 22540860 |
[102] |
Truong NM, Chen YP, Mejias J, et al. The Meloidogyne incogni-ta nuclear effector MiEFF1 interacts with Arabidopsis cytosolic glyceraldehyde-3-phosphate dehydrogenases to promote parasitism[J]. Front Plant Sci, 2021, 12: 641480.
doi: 10.3389/fpls.2021.641480 URL |
[103] |
Mejias J, Chen YP, Bazin J, et al. Silencing the conserved small nuclear ribonucleoprotein SmD1 target gene alters susceptibility to root-knot nematodes in plants[J]. Plant Physiol, 2022, 189(3): 1741-1756.
doi: 10.1093/plphys/kiac155 pmid: 35385078 |
[104] |
Mejias J, Bazin J, Truong NM, et al. The root-knot nematode effector MiEFF18 interacts with the plant core spliceosomal protein SmD1 required for giant cell formation[J]. New Phytol, 2021, 229(6): 3408-3423.
doi: 10.1111/nph.17089 pmid: 33206370 |
[105] | Zhao JL, et al. The root-knot nematode effector Mi2G02 hijacks a host plant trihelix transcription factor to promote nematode parasitism[J]. Plant Commun, 2023: 100723. |
[106] | Huang GZ, Dong RH, Allen R, et al. Two chorismate mutase genes from the root-knot nematode Meloidogyne incognita[J]. Mol Plant Pathol, 2005, 6(1): 23-30. |
[107] |
Doyle EA, Lambert KN. Meloidogyne javanica chorismate mutase 1 alters plant cell development[J]. Mol Plant Microbe Interact, 2003, 16(2): 123-131.
doi: 10.1094/MPMI.2003.16.2.123 URL |
[108] |
Iberkleid I, Vieira P, de Almeida Engler J, et al. Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes[J]. PLoS One, 2013, 8(5): e64586.
doi: 10.1371/journal.pone.0064586 URL |
[109] |
Phani V, Shivakumara TN, Davies KG, et al. Meloidogyne incog-nita fatty acid- and retinol- binding protein(mi-FAR-1)affects nematode infection of plant roots and the attachment of Pasteuria penetrans endospores[J]. Front Microbiol, 2017, 8: 2122.
doi: 10.3389/fmicb.2017.02122 URL |
[110] |
Shivakumara TN, Somvanshi VS, Phani V, et al. Meloidogyne in-cognita(Nematoda: Meloidogynidae)sterol-binding protein Mi-SBP-1 as a target for its management[J]. Int J Parasitol, 2019, 49(13/14): 1061-1073.
doi: 10.1016/j.ijpara.2019.09.002 URL |
[111] |
Chen YP, Liu Q, Sun XQ, et al. Meloidogyne enterolobii MeMSP1 effector targets the glutathione-S-transferase phi GSTF family in Arabidopsis to manipulate host metabolism and promote nematode parasitism[J]. New Phytol, 2023, 240(6): 2468-2483.
doi: 10.1111/nph.v240.6 URL |
[112] |
Huang GZ, Dong RH, Allen R, et al. A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor[J]. Mol Plant Microbe Interact, 2006, 19(5): 463-470.
doi: 10.1094/MPMI-19-0463 URL |
[113] |
Gorny AM, Wang XH, Hay FS, et al. Development of a species-specific PCR for detection and quantification of Meloido-gyne hapla in soil using the 16D10 root-knot nematode effector gene[J]. Plant Dis, 2019, 103(8): 1902-1909.
doi: 10.1094/PDIS-09-18-1539-RE URL |
[114] |
Long HB, Peng H, Huang WK, et al. Identification and molecular characterization of a new β-1, 4-endoglucanase gene(Ha-eng-1a)in the cereal cyst nematode Heterodera avenae[J]. Eur J Plant Pathol, 2012, 134(2): 391-400.
doi: 10.1007/s10658-012-9997-1 URL |
[115] |
Gal TZ, Aussenberg ER, Burdman S, et al. Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato[J]. Planta, 2006, 224(1): 155-162.
doi: 10.1007/s00425-005-0204-x pmid: 16395582 |
[116] |
Hewezi T, Baum TJ. Manipulation of plant cells by cyst and root-knot nematode effectors[J]. Mol Plant Microbe Interact, 2013, 26(1): 9-16.
doi: 10.1094/MPMI-05-12-0106-FI URL |
[117] |
Rutter WB, Franco J, Gleason C. Rooting out the mechanisms of root-knot nematode-plant interactions[J]. Annu Rev Phytopathol, 2022, 60: 43-76.
doi: 10.1146/annurev-phyto-021621-120943 pmid: 35316614 |
[118] | 王远征, 彭德良, 刘晨, 等. 南方根结线虫效应因子功能的研究进展[J]. 生命科学, 2020, 32(4): 403-412. |
Wang YZ, Peng DL, Liu C, et al. Overview of the molecular function of Meloidogyne incognita effectors[J]. Chin Bull Life Sci, 2020, 32(4): 403-412. | |
[119] |
Tytgat T, Vanholme B, De Meutter J, et al. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes[J]. Mol Plant Microbe Interact, 2004, 17(8): 846-852.
doi: 10.1094/MPMI.2004.17.8.846 URL |
[120] |
Olmo R, Cabrera J, Díaz-Manzano FE, et al. Root-knot nematodes induce gall formation by recruiting developmental pathways of post-embryonic organogenesis and regeneration to promote transient pluripotency[J]. New Phytol, 2020, 227(1): 200-215.
doi: 10.1111/nph.16521 pmid: 32129890 |
[1] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[2] | HAN Shao-jie, ZHENG Jing-wu. Research Advances on the Functional Study of Host Resistance Genes to Heterodera glycines [J]. Biotechnology Bulletin, 2021, 37(7): 14-24. |
[3] | JIN Na, WANG Xue-yan, LIU Qian, PENG De-liang, PENG Huan, JIAN Heng. Effects of Biofumigation on Root-knot Nematodes and Soil Nematode Community [J]. Biotechnology Bulletin, 2021, 37(7): 156-163. |
[4] | SHU Jie, ZHANG Ren-jun, LIANG Ying-chong, CHEN Ya-qiong, ZHANG Juan, GUO Jian, CHEN Sui-yun. Control of Root-knot Nematode Disease by Compounding Biological Agents from Plant and Microorganisms [J]. Biotechnology Bulletin, 2021, 37(7): 164-174. |
[5] | DENG Miao-miao, GUO Xiao-li. Research Progress on Plants Responses to Parasitic Nematodes Infection [J]. Biotechnology Bulletin, 2021, 37(7): 25-34. |
[6] | LI Chun-jie, WANG Cong-li. Recognition Mechanism of Plant-parasitic Nematodes in Response to Semiochemicals [J]. Biotechnology Bulletin, 2021, 37(7): 35-44. |
[7] | ZHAO Hong-hai, LIANG Chen, ZHANG Yu, DUAN Fang-meng, SONG Wen-wen, SHI Qian-qian, HUANG Wen-kun, PENG De-liang. Research Advances of Biology in Ditylenchus destructor Thorne,1945 [J]. Biotechnology Bulletin, 2021, 37(7): 45-55. |
[8] | HUANG Wen-kun, YU Jing-wen, JIA Jian-ping, PENG De-liang. Effects of Plant Hormones on the Establishment and Development of Plant Parasitic Nematodes’ Feeding Sites [J]. Biotechnology Bulletin, 2021, 37(7): 56-64. |
[9] | ZHANG Ya-jing, SONG Mei-yan, ZHANG Yi-jing, FANG Qing, YANG Jun, PENG De-liang, HUANG Wen-kun, PENG Huan, ZHU Ying-bo, KONG Ling-an. Identification of Purpureocillium lilacinum and Trichoderma harzianum Strains for Simultaneously Controlling Cucumber Root Rot and Root-knot Nematode Diseases [J]. Biotechnology Bulletin, 2021, 37(2): 40-50. |
[10] | CHEN Si-qian, WU Bian, LIU Chen-jian, LI Xiao-ran. Research Advances on the Influence of Intestinal Microorganism on the Immune Effect of Vaccine [J]. Biotechnology Bulletin, 2021, 37(12): 220-226. |
[11] | WANG Bing, LUO Hai-ling. Research Progress on Interaction Between Rumen Microorganisms and Host and Its Dietary Regulation [J]. Biotechnology Bulletin, 2020, 36(2): 39-48. |
[12] | XU Hai-dong, LENG Qi-ying, PATRICIA Adu-Asiamah, WANG Zhang, LI Ting, ZHANG Li. Circular RNAs:Research Progress and Its Significance in Birds and Livestock [J]. Biotechnology Bulletin, 2018, 34(11): 56-69. |
[13] | GUAN Gui-jing, ZHAO Heng-yan, WANG Hong-su, LIU Jin-xiang. Effects of Virus-Plant Interaction on Biological Characteristics of Insects as Vectors [J]. Biotechnology Bulletin, 2017, 33(4): 44-50. |
[14] | TANG Rui-qi, XIONG Liang, BAI Feng-wu, ZHAO Xin-qing. Activity Comparison of the Artificial Hybrid Promoter with Its Native Promoter in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2017, 33(1): 120-128. |
[15] | ZHENG Jing-yuan, LIU Feng, ZHU Chun-hui. Isolation and Induced Expression of Ethylene Transcription Factor Gene CaERF18 from Capscium annuumm [J]. Biotechnology Bulletin, 2016, 32(3): 87-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||