Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (6): 95-104.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1199
Previous Articles Next Articles
CAI Zhi-cheng(), WANG Yuan-yuan, SANG Xiao-han, ZENG Li-xian, DENG Wen-tao, WANG Jia-mei()
Received:
2023-12-21
Online:
2024-06-26
Published:
2024-05-14
Contact:
WANG Jia-mei
E-mail:czc@hainanu.edu.cn;992918@hainanu.edu.cn
CAI Zhi-cheng, WANG Yuan-yuan, SANG Xiao-han, ZENG Li-xian, DENG Wen-tao, WANG Jia-mei. Research Progress of Cold Plasma Activated Solution in Antibacteria and Removing Biofilm[J]. Biotechnology Bulletin, 2024, 40(6): 95-104.
细 菌 Bacteria | 信号分子 Signal molecule | 功能 Function | 文献 Reference |
---|---|---|---|
铜绿假单胞菌 Pseudomonas aeruginosa | 喹诺酮(PQS)、2-(2-羟基苯基)-噻唑-4-甲醛(IQS) | 调控毒力、增加感染 | [ |
蜡状芽孢杆菌 Bacillus cereus | 顺式-2-不饱和脂肪酸(DSFs)、二酮哌嗪(DKPs) | 调控生物被膜形成 | [ |
沙门氏菌 Salmonella | 自诱导物-3(AI-3) | 参与致病过程 | [ |
大肠杆菌O157:H7 Escherichia coli O157:H7 | 肾上腺素衍生物 | 促进毒力因子和生物的生成 | [ |
青枯病菌 Ralstonia solancearum | 3-羟基-棕榈酸甲酯(3-OH-PAME) | 诱导毒力因子生成 | [ |
Table 1 Other signaling molecules involved in biofilm formation
细 菌 Bacteria | 信号分子 Signal molecule | 功能 Function | 文献 Reference |
---|---|---|---|
铜绿假单胞菌 Pseudomonas aeruginosa | 喹诺酮(PQS)、2-(2-羟基苯基)-噻唑-4-甲醛(IQS) | 调控毒力、增加感染 | [ |
蜡状芽孢杆菌 Bacillus cereus | 顺式-2-不饱和脂肪酸(DSFs)、二酮哌嗪(DKPs) | 调控生物被膜形成 | [ |
沙门氏菌 Salmonella | 自诱导物-3(AI-3) | 参与致病过程 | [ |
大肠杆菌O157:H7 Escherichia coli O157:H7 | 肾上腺素衍生物 | 促进毒力因子和生物的生成 | [ |
青枯病菌 Ralstonia solancearum | 3-羟基-棕榈酸甲酯(3-OH-PAME) | 诱导毒力因子生成 | [ |
[1] |
Vidyadharani G, Vijaya Bhavadharani HK, Sathishnath P, et al. Present and pioneer methods of early detection of food borne pathogens[J]. J Food Sci Technol, 2022, 59(6): 2087-2107.
doi: 10.1007/s13197-021-05130-4 pmid: 35602455 |
[2] | Singh A, Amod A, Pandey P, et al. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies[J]. Biomed Mater, 2022, 17(2): 022003. |
[3] | Han JH, Luo J, Du ZY, et al. Synergistic effects of baicalin and levofloxacin against hypervirulent Klebsiella pneumoniae biofilm in vitro[J]. Curr Microbiol, 2023, 80(4): 126. |
[4] | Smitran A, Lukovic B, Bozic L, et al. Carbapenem-resistant Acinetobacter baumannii: biofilm-associated genes, biofilm-eradication potential of disinfectants, and biofilm-inhibitory effects of selenium nanoparticles[J]. Microorganisms, 2023, 11(1): 171. |
[5] | Brooks JR, Chonko DJ, Pigott M, et al. Mapping bacterial biofilm on explanted orthopedic hardware: an analysis of 14 consecutive cases[J]. APMIS, 2023, 131(4): 170-179. |
[6] | Kim U, Kim JH, Oh SW. Review of multi-species biofilm formation from foodborne pathogens: multi-species biofilms and removal methodology[J]. Crit Rev Food Sci Nutr, 2022, 62(21): 5783-5793. |
[7] | Pang XY, Song XY, Chen MJ, et al. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry[J]. Compr Rev Food Sci Food Saf, 2022, 21(2): 1657-1676. |
[8] | Suwannarat S, Thammaniphit C, Srisonphan S. Electrohydraulic streamer discharge plasma-enhanced Alternaria brassicicola disinfection in seed sterilization[J]. ACS Appl Mater Interfaces, 2021, 13(37): 43975-43983. |
[9] | Bradu C, Kutasi K, Magureanu M, et al. Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture[J]. J Phys D: Appl Phys, 2020, 53(22): 223001. |
[10] | Laurita R, Gozzi G, Tappi S, et al. Effect of plasma activated water(PAW)on rocket leaves decontamination and nutritional value[J]. Innov Food Sci Emerg Technol, 2021, 73: 102805. |
[11] | Zhao YM, Patange A, Sun DW, et al. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry[J]. Compr Rev Food Sci Food Saf, 2020, 19(6): 3951-3979. |
[12] | Shah U, Wang QY, Kathariou S, et al. Optimization of plasma-activated water and validation of a potential surrogate for Salmonella for future egg washing processes[J]. J Food Prot, 2023, 86(1): 100029. |
[13] | 陈兆芳, 张维娜, 孟勇, 等. 植入物动物感染模型在葡萄球菌生物膜研究中的应用与进展[J]. 微生物学通报, 2022, 49(12): 5321-5330. |
Chen ZF, Zhang WN, Meng Y, et al. Application of foreign body infection models in the biofilm of Staphylococcus spp.: a review[J]. Microbiol China, 2022, 49(12): 5321-5330. | |
[14] | Yu JT, Wang F, Shen Y, et al. Inhibitory effect of ficin on Candida albicans biofilm formation and pre-formed biofilms[J]. BMC Oral Health, 2022, 22(1): 350. |
[15] | Long DR, Penewit K, Lo HY, et al. In vitro selection identifies Staphylococcus aureus genes influencing biofilm formation[J]. Infect Immun, 2023, 91(3): e0053822. |
[16] | Zhang XY, Zheng LP, Lu ZX, et al. Biochemical and molecular regulatory mechanism of the pgpH gene on biofilm formation in Listeria monocytogenes[J]. J Appl Microbiol, 2023, 134(2): lxac086. |
[17] | Pan M, Li HZ, Han XY, et al. Effects of hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances and the architecture of biofilms[J]. Chemosphere, 2022, 307(Pt 4): 135965. |
[18] | Carrascosa C, Raheem D, Ramos F, et al. Microbial biofilms in the food industry-a comprehensive review[J]. Int J Environ Res Public Health, 2021, 18(4): 2014. |
[19] | Li X, Qi H, Zhang XC, et al. Quantitative modeling of bacterial quorum sensing dynamics in time and space[J]. Chin Phys B, 2020, 29(10): 108702. |
[20] | Wu SB, Qiao JJ, Yang AD, et al. Potential of orthogonal and cross-talk quorum sensing for dynamic regulation in cocultivation[J]. Chem Eng J, 2022, 445: 136720. |
[21] | Wang YS, Bian ZR, Wang Y. Biofilm formation and inhibition mediated by bacterial quorum sensing[J]. Appl Microbiol Biotechnol, 2022, 106(19/20): 6365-6381. |
[22] | Bez C, Geller AM, Levy A, et al. Cell-cell signaling proteobacterial LuxR solos: a treasure trove of subgroups having different origins, ligands, and ecological roles[J]. mSystems, 2023, 8(2): e0103922. |
[23] | Wang JF, Liu QJ, Dong DY, et al. AHLs-mediated quorum sensing threshold and its response towards initial adhesion of wastewater biofilms[J]. Water Res, 2021, 194: 116925. |
[24] | 杨登辉, 孔里程, 孙建和, 等. 密度感应系统: 对细菌致病力的自行调控[J]. 微生物学通报, 2017, 44(12): 3007-3014. |
Yang DH, Kong LC, Sun JH, et al. Quorum sensing: an auto regulator for bacterial pathogenicity[J]. Microbiol China, 2017, 44(12): 3007-3014. | |
[25] | Xue BQ, Shen YM, Zuo J, et al. Bringing antimicrobial strategies to a new level: the quorum sensing system as a target to control Streptococcus suis[J]. Life, 2022, 12(12): 2006. |
[26] | 陈婧, 宋炳皞, 储琨, 等. 信号分子在生物脱氮中的作用及检测方法[J]. 微生物学通报, 2023, 50(5): 2249-2264. |
Chen J, Song BH, Chu K, et al. Role of signal molecules in biological nitrogen removal and detection methods[J]. Microbiol China, 2023, 50(5): 2249-2264. | |
[27] | Zhu XX, Chen WJ, Bhatt K, et al. Innovative microbial disease biocontrol strategies mediated by quorum quenching and their multifaceted applications: a review[J]. Front Plant Sci, 2023, 13: 1063393. |
[28] | Li WR, Zeng TH, Yao JW, et al. Diallyl sulfide from garlic suppresses quorum-sensing systems of Pseudomonas aeruginosa and enhances biosynthesis of three B vitamins through its thioether group[J]. Microb Biotechnol, 2021, 14(2): 677-691. |
[29] | Wang JH, Wang C, Yu HB, et al. Bacterial quorum-sensing signal IQS induces host cell apoptosis by targeting POT1-p53 signalling pathway[J]. Cell Microbiol, 2019, 21(10): e13076. |
[30] | Zhao LJ, Duan FX, Gong M, et al. (+)-terpinen-4-ol inhibits Bacillus cereus biofilm formation by upregulating the interspecies quorum sensing signals diketopiperazines and diffusing signaling factors[J]. J Agric Food Chem, 2021, 69(11): 3496-3510. |
[31] | Lucca V, Apellanis Borges K, Quedi Furian T, et al. Influence of the norepinephrine and medium acidification in the growth and adhesion of Salmonella Heidelberg isolated from poultry[J]. Microb Pathog, 2020, 138: 103799. |
[32] | Barrasso K, Watve S, Simpson CA, et al. Dual-function quorum-sensing systems in bacterial pathogens and symbionts[J]. PLoS Pathog, 2020, 16(10): e1008934. |
[33] | Ujita Y, Sakata M, Yoshihara A, et al. Signal production and response specificity in the phc quorum sensing systems of Ralstonia solanacearum species complex[J]. ACS Chem Biol, 2019, 14(10): 2243-2251. |
[34] | Cheah YT, Chan DJC. A methodological review on the characterization of microalgal biofilm and its extracellular polymeric substances[J]. J Appl Microbiol, 2022, 132(5): 3490-3514. |
[35] | Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation[J]. Crit Rev Biochem Mol Biol, 2022, 57(3): 305-332. |
[36] | Campoccia D, Montanaro L, Arciola CR. Extracellular DNA(eDNA). A major ubiquitous element of the bacterial biofilm architecture[J]. Int J Mol Sci, 2021, 22(16): 9100. |
[37] | Li YR, Xing Z, Wang SC, et al. Disruption of biofilms in periodontal disease through the induction of phase transition by cationic dextrans[J]. Acta Biomater, 2023, 158: 759-768. |
[38] | Bisht K, Luecke AR, Wakeman CA. Temperature-specific adaptations and genetic requirements in a biofilm formed by Pseudomonas aeruginosa[J]. Front Microbiol, 2023, 13: 1032520. |
[39] | Huang L, Jin YN, Zhou DH, et al. A review of the role of extracellular polymeric substances(EPS)in wastewater treatment systems[J]. Int J Environ Res Public Health, 2022, 19(19): 12191. |
[40] |
Kaushik NK, Ghimire B, Li Y, et al. Biological and medical applications of plasma-activated media, water and solutions[J]. Biol Chem, 2018, 400(1): 39-62.
doi: 10.1515/hsz-2018-0226 pmid: 30044757 |
[41] | Cai ZC, Wang JM, Wang YY, et al. Effect of different process conditions on the physicochemical and antimicrobial properties of plasma-activated water[J]. Plasma Sci Technol, 2023, 25(12): 76-84. |
[42] | Cai ZC, Wang JM, Liu CC, et al. Effects of high voltage atmospheric cold plasma treatment on the number of microorganisms and the quality of Trachinotus ovatus during refrigerator storage[J]. Foods, 2022, 11(17): 2706. |
[43] | Stryczewska HD. Supply systems of non-thermal plasma reactors. construction review with examples of applications[J]. Appl Sci, 2020, 10(9): 3242. |
[44] | Milhan NVM, Chiappim W, Sampaio ADG, et al. Applications of plasma-activated water in dentistry: a review[J]. Int J Mol Sci, 2022, 23(8): 4131. |
[45] | 刘骁, 孟茜, 张明莉, 等. 等离子体活化水对腐败希瓦氏菌杀菌效果及机理[J]. 食品科学, 2023, 44(9): 25-31. |
Liu X, Meng X, Zhang ML, et al. Inactivation effect and mechanism of plasma activated water on Shewanella putrefaciens[J]. Food Sci, 2023, 44(9): 25-31. | |
[46] | Han QY, Wen X, Gao JY, et al. Application of plasma-activated water in the food industry: a review of recent research developments[J]. Food Chem, 2023, 405(Pt A): 134797. |
[47] | 赵电波, 王少丹, 郑凯茜, 等. 等离子体活化水-苯乳酸协同杀灭大肠杆菌O157: H7 作用及机制研究[J]. 食品工业科技, 2022, 43(14): 138-143. |
Zhao DB, Wang SD, Zheng KX, et al. Synergistic inactivation effects and mechanisms of plasma-activated water combined with phenyllactic acid against Escherichia coli O157: H7[J]. Sci Technol Food Ind, 2022, 43(14): 138-143. | |
[48] | Wu SJ, Zhang Q, Ma RN, et al. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water[J]. Eur Phys J Spec Top, 2017, 226(13): 2887-2899. |
[49] | Liu ZC, Guo L, Liu DX, et al. Chemical kinetics and reactive species in normal saline activated by a surface air discharge[J]. Plasma Process Polym, 2017, 14(4/5): 1600113. |
[50] | Li YQ, Nie LL, Liu DW, et al. Plasma-activated chemical solutions and their bactericidal effects[J]. Plasma Process Polym, 2022, 19(11): 2100248. |
[51] | Liu CH, Chen C, Jiang AL, et al. Effects of plasma-activated water on microbial growth and storage quality of fresh-cut apple[J]. Innov Food Sci Emerg Technol, 2020, 59: 102256. |
[52] |
Kaushik NK, Bhartiya P, Kaushik N, et al. Nitric-oxide enriched plasma-activated water inactivates 229E coronavirus and alters antiviral response genes in human lung host cells[J]. Bioact Mater, 2023, 19: 569-580.
doi: 10.1016/j.bioactmat.2022.05.005 pmid: 35574062 |
[53] | Freyssenet C, Karlen S. Plasma-activated aerosolized hydrogen peroxide(aHP)in surface inactivation procedures[J]. Appl Biosaf, 2019, 24(1): 10-19. |
[54] | Qian J, Wang C, Zhuang H, et al. Evaluation of meat-quality and myofibrillar protein of chicken drumsticks treated with plasma-activated lactic acid as a novel sanitizer[J]. LWT, 2021, 138: 110642. |
[55] | Inguglia ES, Oliveira M, Burgess CM, et al. Plasma-activated water as an alternative nitrite source for the curing of beef jerky: influence on quality and inactivation of Listeria innocua[J]. Innov Food Sci Emerg Technol, 2020, 59: 102276. |
[56] | Ki SH, Noh H, Ahn GR, et al. Influence of nonthermal atmospheric plasma-activated water on the structural, optical, and biological properties of Aspergillus brasiliensis spores[J]. Appl Sci, 2020, 10(18): 6378. |
[57] | Lu JY, Hu XC, Ren LJ. Biofilm control strategies in food industry: inhibition and utilization[J]. Trends Food Sci Technol, 2022, 123: 103-113. |
[58] | Xu ZM, Zhou XX, Yang WS, et al. In vitro antimicrobial effects and mechanism of air plasma-activated water on Staphylococcus aureus biofilm[J]. Plasma Process Polym, 2020, 17(8): 1900270. |
[59] | Zhao JY, Qian J, Luo J, et al. Morphophysiological changes in Staphylococcus aureus biofilms treated with plasma-activated hydrogen peroxide solution[J]. Appl Sci, 2021, 11(24): 11597. |
[60] | Heng YP, Wang M, Jiang HW, et al. Plasma-activated acidic electrolyzed water: a new food disinfectant for bacterial suspension and biofilm[J]. Foods, 2022, 11(20): 3241. |
[61] | Seo H, Hong J, Kim T, et al. Super-antibiofilm effect of N2 plasma treated buffer(NPB)against plant pathogenic bacterium[J]. J Biol Eng, 2019, 13: 94. |
[62] |
张群霞, 方草, 杨春俊, 等. 低温等离子体激活过硫酸盐灭活红色毛癣菌生物膜[J]. 中国消毒学杂志, 2020, 37(1): 1-4.
doi: 10.11726/j.issn.1001-7658.2020.01.001 |
Zhang QX, Fang C, Yang CJ, et al. Low-temperature plasma-activated persulfate inactivates T. rubrum biofilm[J]. Chin J Disinfect, 2020, 37(1): 1-4. | |
[63] | Gao YW, Francis K, Zhang XH. Review on formation of cold plasma activated water(PAW)and the applications in food and agriculture[J]. Food Res Int, 2022, 157: 111246. |
[64] | Gu X, Huang D, Chen JH, et al. Bacterial inactivation and biofilm disruption through indigenous prophage activation using low-intensity cold atmospheric plasma[J]. Environ Sci Technol, 2022, 56(12): 8920-8931. |
[1] | ZOU Xiu-wei, YUE Jia-ni, LI Zhi-yu, DAI Liang-ying, LI Wei. Functional Analysis of Rice Heat Shock Transcription Factor HsfA2b Regulating the Resistance to Abiotic Stresses [J]. Biotechnology Bulletin, 2024, 40(2): 90-98. |
[2] | HUANG Ya-ning, ZHANG Hai-jiao, HAN Yu-qian, LIU Zun-ying. Effects of Supercritical CO2 Combined with Ginger Essential Oil on the Sterilization of Vibrio parahaemolyticus and Its Mechanism [J]. Biotechnology Bulletin, 2023, 39(5): 297-305. |
[3] | REN Si-yu, JIANG Cong-yi, YU Tao, KANG Rui, JIANG Xiao-bing. Role of agr System in the Antimicrobial Resistance and Biofilm Formation of Listeria monocytogenes [J]. Biotechnology Bulletin, 2023, 39(2): 254-262. |
[4] | ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 36-43. |
[5] | SHI Cheng-long, WANG Xi-wu, LI An-qi, QIAN Sen-he, WANG Zhou, ZHAO Shi-guang, LIU Yan, XUE Zheng-lian. Effect of ε-Polylysine on the Cell Structure and Biofilm Formation of Cronobacter sakazakii [J]. Biotechnology Bulletin, 2022, 38(9): 147-157. |
[6] | LI Lu-ping, LIANG Da-cheng. The Subcellular Communication Driven by Reactive Oxygen Species in Plants [J]. Biotechnology Bulletin, 2021, 37(5): 165-173. |
[7] | YANG Li, WANG Bo, LI Wen-jiao, WANG Xing-jun, ZHAO Shu-zhen. Research Progress on Production,Scavenging and Signal Transduction of ROS Under Drought Stress [J]. Biotechnology Bulletin, 2021, 37(4): 194-203. |
[8] | ZHANG Yang, CHENG Peng, LI Xiao-fen, CHEN Hong-wei. Research Progress on Anti-biofilm Peptides [J]. Biotechnology Bulletin, 2021, 37(2): 216-223. |
[9] | LU Lin, YANG Shang-yu, LIU Wei-dong, LU Li-ming. Mining of Genes Related to Reactive Oxygen Species Scavenging in Response to Salt Stress in Nicotiana alata Based on Transcriptome Sequencing [J]. Biotechnology Bulletin, 2020, 36(12): 42-53. |
[10] | LI Xiao-yan, LI Ze-qi, WANG Yu-qian, YU Jing, LIN Zhen-ping, LIN Xiang-min. Construction of Aeromonas hydrophila acrA Deficient Strain and Determination of Its Physiological Function [J]. Biotechnology Bulletin, 2020, 36(11): 63-69. |
[11] | LIU Qian-qian, SHI Hong-wei, GUO Chang-lu, ZHANG Zhi-zhou. Composition Analysis of Prokaryotic Flora in the Marine Biofilm Correlated with Ascidian Settlement [J]. Biotechnology Bulletin, 2020, 36(11): 76-84. |
[12] | LIU Rong, CUI Kai, BAI Fu-heng, DIAO Qi-yu. Research Progress on Methionine Regulating the Oxidative Stress of Livestock and Poultry [J]. Biotechnology Bulletin, 2020, 36(10): 207-214. |
[13] | WEN Yuan, XIA Juan, QI Liang-hua, LIU Xiao-wei, LIU Chen-guang, BAI Feng-wu. Enhanced Furfural Tolerance in Zymomonas mobilis by the Overexpression of Antioxidant Genes [J]. Biotechnology Bulletin, 2019, 35(8): 85-94. |
[14] | CHANG Guo-wei, HUANG Zeng-wei, LI Zhi-de, LIANG Da-feng. Research Progress on the Development and Application of Dextranase [J]. Biotechnology Bulletin, 2019, 35(6): 196-204. |
[15] | HUANG Xiang-mei, WU Ya-qian, LIU Ying, LIANG Jia-ye, SU Wei-ming. Inhibitory Effects of AI-2 Quorum Sensing Inhibitors from Marine Lactic Acid Bacteria on Listeria monocytogenes [J]. Biotechnology Bulletin, 2019, 35(4): 36-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||