Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (8): 244-254.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0101
Previous Articles Next Articles
HAN Kai(), ZHOU Yong-shun, ZHANG Kai-yue, WANG Lu, GAO Jian-feng(), CHEN Fu-long()
Received:
2024-01-24
Online:
2024-08-26
Published:
2024-07-30
Contact:
GAO Jian-feng, CHEN Fu-long
E-mail:3173247216@qq.com;jianfengg@shzu.edu.cn;fulongch@shzu.edu.cn
HAN Kai, ZHOU Yong-shun, ZHANG Kai-yue, WANG Lu, GAO Jian-feng, CHEN Fu-long. Evaluation of Drought Resistance of Three Chlorella Strains[J]. Biotechnology Bulletin, 2024, 40(8): 244-254.
Fig. 1 Cell concentration and biomass of Chlorella vulgaris under drought stress A and E, B and F, C and G, D and H refers to physiological indexes of Chlorella vulgaris under 0%, 5%, 15% and 25% PEG6000 stress, respectively. Different lowercase letters indicate significant difference among different chlorella at the same treatment and at the same time(P < 0.05);CV:FACHB-2338. The same below
PEG6000浓度 PEG6000 concentration/% | 小球藻生物量体积产率 Biomass volume yield of C. vulgaris /(g·L-1·d-1) | |||
---|---|---|---|---|
6B | 8A1 | FACHB-2338 | ||
0 | 0.91 | 0.87 | 0.82 | |
5 | 0.82 | 0.78 | 0.73 | |
15 | 0.55 | 0.51 | 0.35 | |
25 | 0.22 | 0.16 | 0.08 |
Table 1 Biomass volume yield of C. vulgaris under drought stress
PEG6000浓度 PEG6000 concentration/% | 小球藻生物量体积产率 Biomass volume yield of C. vulgaris /(g·L-1·d-1) | |||
---|---|---|---|---|
6B | 8A1 | FACHB-2338 | ||
0 | 0.91 | 0.87 | 0.82 | |
5 | 0.82 | 0.78 | 0.73 | |
15 | 0.55 | 0.51 | 0.35 | |
25 | 0.22 | 0.16 | 0.08 |
小球藻种类 Chlorella species | OD680 | 干重 Dry weight | 可溶性糖 Soluble sugar | 可溶性蛋白质 Soluble protein | Pro | MDA | CAT | SOD | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b |
---|---|---|---|---|---|---|---|---|---|---|
6B | 0.269 | 0.412 | 2.812 | 1.434 | 1.569 | 3.034 | 1.440 | 2.384 | 0.583 | 0.565 |
8A1 | 0.197 | 0.361 | 2.383 | 1.465 | 1.394 | 3.365 | 1.474 | 1.891 | 0.555 | 0.592 |
FACHB-2338 | 0.169 | 0.307 | 1.880 | 1.286 | 1.280 | 3.592 | 1.332 | 1.742 | 0.530 | 0.549 |
平均值Mean | 0.212 | 0.36 | 2.358 | 1.359 | 1.414 | 3.330 | 1.415 | 2.005 | 0.558 | 0.569 |
Table 2 Drought resistance coefficients of each physiological index of C. vulgaris
小球藻种类 Chlorella species | OD680 | 干重 Dry weight | 可溶性糖 Soluble sugar | 可溶性蛋白质 Soluble protein | Pro | MDA | CAT | SOD | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b |
---|---|---|---|---|---|---|---|---|---|---|
6B | 0.269 | 0.412 | 2.812 | 1.434 | 1.569 | 3.034 | 1.440 | 2.384 | 0.583 | 0.565 |
8A1 | 0.197 | 0.361 | 2.383 | 1.465 | 1.394 | 3.365 | 1.474 | 1.891 | 0.555 | 0.592 |
FACHB-2338 | 0.169 | 0.307 | 1.880 | 1.286 | 1.280 | 3.592 | 1.332 | 1.742 | 0.530 | 0.549 |
平均值Mean | 0.212 | 0.36 | 2.358 | 1.359 | 1.414 | 3.330 | 1.415 | 2.005 | 0.558 | 0.569 |
指标 Index | PC1 | PC2 |
---|---|---|
OD680 | 0.94 | -0.34 |
干重Dry weight | 0.997 | -0.082 |
可溶性糖 Soluble sugar | 0.999 | -0.052 |
可溶性蛋白质 Soluble protein | 0.832 | 0.555 |
脯氨酸Pro | 0.976 | -0.218 |
丙二醛MDA | -0.979 | 0.204 |
过氧化氢酶CAT | 0.792 | 0.611 |
超氧化物歧化酶SOD | 0.922 | -0.388 |
叶绿素a Chlorophyll a | 0.991 | -0.13 |
叶绿素b Chlorophyll b | 0.457 | 0.889 |
特征值 Eigenvalue | 8.147 | 1.853 |
贡献率 Contribution rate/% | 81.473 | 18.527 |
累计贡献率 Accumulated contribution rate/% | 81.473 | 100 |
Table 3 Principal component analysis of physiological characters of C. vulgaris
指标 Index | PC1 | PC2 |
---|---|---|
OD680 | 0.94 | -0.34 |
干重Dry weight | 0.997 | -0.082 |
可溶性糖 Soluble sugar | 0.999 | -0.052 |
可溶性蛋白质 Soluble protein | 0.832 | 0.555 |
脯氨酸Pro | 0.976 | -0.218 |
丙二醛MDA | -0.979 | 0.204 |
过氧化氢酶CAT | 0.792 | 0.611 |
超氧化物歧化酶SOD | 0.922 | -0.388 |
叶绿素a Chlorophyll a | 0.991 | -0.13 |
叶绿素b Chlorophyll b | 0.457 | 0.889 |
特征值 Eigenvalue | 8.147 | 1.853 |
贡献率 Contribution rate/% | 81.473 | 18.527 |
累计贡献率 Accumulated contribution rate/% | 81.473 | 100 |
小球藻种类 Material code | D 值 D value | 排序 Rank |
---|---|---|
6B | 0.866 | 1 |
8A1 | 0.772 | 2 |
FACHB-2338 | -0.079 | 3 |
Table 4 Comprehensive evaluation and ranking of drought resistance of C. vulgaris
小球藻种类 Material code | D 值 D value | 排序 Rank |
---|---|---|
6B | 0.866 | 1 |
8A1 | 0.772 | 2 |
FACHB-2338 | -0.079 | 3 |
[1] | Garcia-Perez P, Cassani L, Garcia-Oliveira P, et al. Algal nutraceuticals: a perspective on metabolic diversity, current food applications, and prospects in the field of metabolomics[J]. Food Chem, 2023, 409: 135295. |
[2] | Neag E, Stupar Z, Maicaneanu SA, et al. Advances in biodiesel production from microalgae[J]. Energies, 2023, 16(3): 1129. |
[3] | Matchim Kamdem MC, Lai NJ. Alkyl carbamate ionic liquids for permeabilization of microalgae biomass to enhance lipid recovery for biodiesel production[J]. Heliyon, 2023, 9(1): e12754. |
[4] | Lafarga T, Mayre E, Echeverria G, et al. Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods[J]. LWT, 2019, 115: 108439. |
[5] | Sánchez F, Lozano-Muñoz I, Muñoz S, et al. Effect of dietary inclusion of microalgae(Nannochloropsis gaditana and Schizochytrium spp)on non-specific immunity and erythrocyte maturity in Atlantic salmon fingerlings[J]. Fish Shellfish Immunol, 2023, 140: 108975. |
[6] |
马浩天, 李润植, 张宏江, 等. 基于微藻培养处理畜禽养殖废水的研究进展[J]. 生物技术通报, 2018, 34(11): 83-90.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0484 |
Ma HT, Li RZ, Zhang HJ, et al. Research progress on the treatment of wastewater from poultry and livestock breeding based on the microalgae cultivation[J]. Biotechnol Bull, 2018, 34(11): 83-90. | |
[7] | Choudhary P, Assemany PP, Naaz F, et al. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass[J]. Sci Total Environ, 2020, 726: 137961. |
[8] | 张丙昌, 苏淼, 龚健. 生物结皮中人工培养藻株与野生藻株的形态学差异[J]. 干旱区研究, 2015, 32(6): 1213-1219. |
Zhang BC, Su M, Gong J. Morphological variation between artificially cultured cyanobacteria strain and natural cyanobacteria strain in microbiotic soil crusts[J]. Arid Zone Res, 2015, 32(6): 1213-1219. | |
[9] | Lu Q, Xiao Y, Lu YJ. Employment of algae-based biological soil crust to control desertification for the sustainable development: a mini-review[J]. Algal Res, 2022, 65: 102747. |
[10] | Banerjee A, Guria C, Maiti SK. Fertilizer assisted optimal cultivation of microalgae using response surface method and genetic algorithm for biofuel feedstock[J]. Energy, 2016, 115: 1272-1290. |
[11] | Sachin Powar R, Singh Yadav A, Siva Ramakrishna C, et al. Algae: a potential feedstock for third generation biofuel[J]. Mater Today Proc, 2022, 63: A27-A33. |
[12] | Abbasi M, Pishvaee MS, Mohseni S. Third-generation biofuel supply chain: a comprehensive review and future research directions[J]. J Clean Prod, 2021, 323: 129100. |
[13] | Schenk PM, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production[J]. BioEnergy Res, 2008, 1(1): 20-43. |
[14] |
李苑虹, 郭昱昊, 曹燕, 等. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1166 |
Li YH, Guo YH, Cao Y, et al. Research progress in the microalgal growth and accumulation of target products regulated by exogenous phytohormone[J]. Biotechnol Bull, 2023, 39(6): 61-72. | |
[15] | Pagnussat LA, Do Nascimento M, Maroniche G, et al. Azospirillum baldaniorum improves acclimation, lipid productivity and oxidative response of a microalga under salt stress[J]. Algal Res, 2023, 74: 103192. |
[16] | Wang M, Zhu Q, Li XX, et al. Effect of drought stress on degradation and remodeling of membrane lipids in Nostoc flagelliforme[J]. Foods, 2022, 11(12): 1798. |
[17] | Hasnain M, Abideen Z, Hashmi S, et al. Assessing the potential of nutrient deficiency for enhancement of biodiesel production in algal resources[J]. Biofuels, 2023, 14(1): 1-34. |
[18] | 周浩媛, 刘翔, 高政权, 等. 我国微藻产业标准化现状及展望[J]. 海洋科学, 2023, 47(6): 144-151. |
Zhou HY, Liu X, Gao ZQ, et al. Current circumstances, problems, and strategies of microalgae industry standardization in China[J]. Mar Sci, 2023, 47(6): 144-151. | |
[19] |
Cavieres L, Bazaes J, Marticorena P, et al. Pilot-scale phycoremediation using Muriellopsis sp. for wastewater reclamation in the Atacama Desert: microalgae biomass production and pigment recovery[J]. Water Sci Technol, 2021, 83(2): 331-343.
doi: 10.2166/wst.2020.576 pmid: 33504698 |
[20] | 王狄宁, 艾克拜尔·依米提, 吕海英. 新疆北部地区湿地鼓藻类植物多样性及其与环境因子的关系[J]. 西北植物学报, 2022, 42(12): 2123-2132. |
Wang DN, Akbar YMT, Lü HY. Diversity of desmids and its relationship with environmental factors in wetlands of northern Xinjiang[J]. Acta Bot Boreali Occidentalia Sin, 2022, 42(12): 2123-2132. | |
[21] | 刘乐汉, 吕杰, 马媛, 等. 古尔班通古特沙漠藻类结皮中微生物群落空间分异特征[J]. 生态学报, 2023, 43(5): 1923-1935. |
Liu YH, Lyu J, Ma Y, et al. Spatial differentiation of microbial communities in Gurbantunggut Desert algae crust, Xinjiang, China[J]. Acta Ecol Sin, 2023, 43(5): 1923-1935. | |
[22] |
王丹, 龚春霞, 苟亚峰, 等. 塔克拉玛干沙漠生物结皮中几种藻类的系统发育分析[J]. 草业学报, 2014, 23(3): 97-103.
doi: 10.11686/cyxb20140310 |
Wang D, Gong CX, Gou YF, et al. Phylogenetic analyses on the biological crusts of several algae in the Taklimakan Desert[J]. Acta Prataculturae Sin, 2014, 23(3): 97-103. | |
[23] |
徐晓莹, 程天佑, 陈林, 等. 两种培养基间雨生红球藻细胞生长分化差异及磷的作用[J]. 过程工程学报, 2016, 16(5): 840-848.
doi: 10.12034/j.issn.1009-606X.216171 |
Xu XY, Cheng TY, Chen L, et al. Effects of phosphorus on H. pluvialis cell propagation and differentiation in two medium[J]. Chin J Process Eng, 2016, 16(5): 840-848. | |
[24] | 汤章城. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999. |
Tang ZC. Experimental Guide of Modern Plant Physiology[M]. Beijing: Science Press, 1999. | |
[25] |
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254.
pmid: 942051 |
[26] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
Li HS. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000. | |
[27] | 李得孝, 郭月霞, 员海燕, 等. 玉米叶绿素含量测定方法研究[J]. 中国农学通报, 2005, 21(6): 153-155. |
Li DX, Guo YX, Yun HY, et al. Determined methods of chlorophyll from maize[J]. Chin Agric Sci Bull, 2005, 21(6): 153-155.
doi: 10.11924/j.issn.1000-6850.0506153 |
|
[28] |
于国红, 刘朋程, 李磊, 等. 不同基因型马铃薯对干旱胁迫的生理响应[J]. 生物技术通报, 2022, 38(5): 56-63.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0305 |
Yu GH, Liu PC, Li L, et al. Physiological responses of potato in different genotypes to drought stress[J]. Biotechnol Bull, 2022, 38(5): 56-63. | |
[29] | 李涛. 陕西关中地区几种宿根花卉抑菌性与抗旱性研究[D]. 杨凌: 西北农林科技大学, 2010. |
Li T. Study on the bacteriostasis and drought tolerance of several perennial root flower plants in Guanzhong region of Shaan xi province[D]. Yangling: Northwest A & F University, 2010. | |
[30] | Yang YH, Du L, Hosokawa M, et al. Total lipids content, lipid class and fatty acid composition of ten species of microalgae[J]. J Oleo Sci, 2020, 69(10): 1181-1189. |
[31] | 孙小琴, 孙昕, 李鹏飞, 等. 紫外辐射对小球藻光合性能及油脂积累的影响[J]. 中国油脂, 2019, 44(12): 114-119. |
Sun XQ, Sun X, Li PF, et al. Effect of UV radiation on photosynthetic performance and lipid accumulation of Chlorella vulgaris[J]. China Oils Fats, 2019, 44(12): 114-119. | |
[32] | Kleiner FH, Helliwell KE, Chrachri A, et al. Cold-induced[Ca2+]cyt elevations function to support osmoregulation in marine diatoms[J]. Plant Physiol, 2022, 190(2): 1384-1399. |
[33] | Martin L, Esbaugh AJ. Osmoregulatory plasticity during hypersaline acclimation in red drum, Sciaenops ocellatus[J]. J Comp Physiol B, 2021, 191(4): 731-740. |
[34] | 周娟. 干旱胁迫下发状念珠藻生理响应及耐旱相关基因的克隆与分析[D]. 银川: 宁夏大学, 2016. |
Zhou J. Physiological response under drought stress and the cloning and analysis of drought-tolerance related genes in Nostoc flagelliforme[D]. Yinchuan: Ningxia University, 2016. | |
[35] |
Saber H, El-Sheekh MM, Ibrahim A, et al. Effect of UV-B radiation on amino acids profile, antioxidant enzymes and lipid peroxidation of some cyanobacteria and green algae[J]. Int J Radiat Biol, 2020, 96(9): 1192-1206.
doi: 10.1080/09553002.2020.1793025 pmid: 32659138 |
[36] | 赵建刚, 唐涛, 张建能, 等. 地西他滨暴露下2种典型甲藻生长及其抗氧化响应研究[J]. 生态毒理学报, 2022, 17(3): 468-476. |
Zhao JG, Tang T, Zhang JN, et al. Studies on growth and antioxidant responses of two dinoflagellate species under exposure to decitabine[J]. Asian J Ecotoxicol, 2022, 17(3): 468-476. | |
[37] | Zhou GZ, Liu CC, Cheng Y, et al. Molecular evolution and functional divergence of stress-responsive Cu/Zn superoxide dismutases in plants[J]. Int J Mol Sci, 2022, 23(13): 7082. |
[38] | Ghorbel M, Feki K, Tounsi S, et al. The putative auto-inhibitory domain of durum wheat catalase(TdCAT1)positively regulates bacteria cells in response to different stress conditions[J]. Antioxidants, 2022, 11(9): 1820. |
[39] |
李彩霞, 兰海燕. 荒漠植物柽柳抗逆机制的研究进展[J]. 生物技术通报, 2021, 37(5): 128-140.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1040 |
Li CX, Lan HY. Research progress in the stress tolerance mechanisms of desert plant Tamarix spp[J]. Biotechnol Bull, 2021, 37(5): 128-140. | |
[40] | Mandal R, Dutta G. From photosynthesis to biosensing: Chlorophyll proves to be a versatile molecule[J]. Sens Int, 2020, 1: 100058. |
[41] | 季元祖, 张德, 赵军营, 等. 花椒抗旱性研究进展[J]. 干旱地区农业研究, 2023, 41(5): 302-310. |
Ji YZ, Zhang D, Zhao JY, et al. Research progress on drought stress response of Chinese prickly ash[J]. Agric Res Arid Areas, 2023, 41(5): 302-310. | |
[42] | 冯天, 孙守瑞, 宋佳美, 等. 高碳低氮条件下培养基磷水平对莱茵衣藻生长及油脂合成的影响[J/OL]. 中国油脂, 2024. DOI: 10.19902/j.cnki.zgyz.1003-7969.230674. |
Feng T, Sun SR, Song JM, et al. The effect of phosphorus levels in the culture medium on the growth and oil synthesis of Chlamydomonas reinhardtii under high carbon and low nitrogen conditions[J/OL]. China Oils Fats, 2024. DOI: 10.19902/j.cnki.zgyz.1003-7969.230674. | |
[43] | 张云飞, 李斌, 刘财礼, 等. 纳米银胁迫对三角褐指藻生长、光合色素和叶绿素荧光参数的影响[J/OL]. 海洋湖沼通报, 2024. https://link.cnki.net/urlid/37.1141.P.20240124.1820.004. |
Zhang YF, Li B, Liu CL, et al. The effects of nanosilver stress on the growth, photosynthetic pigments, and chlorophyll fluorescence parameters of Phaeodactylum tricornutum Bohlin[J/OL]. Trans Oceanol Limnol, 2024. https://link.cnki.net/urlid/37.1141.P.20240124.1820.004. | |
[44] | 陈萌萌. 微藻-生物炭联合固沙及其对荒漠土壤的改良作用[D]. 衡阳: 南华大学, 2019. |
Chen MM. Effects of microalgae-biochar on sand fixation and improvement of desert soil[D]. Hengyang: University of South China, 2019. | |
[45] | 李玉领, 唐东山, 李向阳, 等. 沙蒿胶-微藻联合固沙效果的试验研究[J]. 工业安全与环保, 2018, 44(3): 56-60. |
Li YL, Tang DS, Li XY, et al. The experiment research on the sand fixation effect of the joint of microalgae and Artemisia sphaerocephala krasch. gum[J]. Ind Saf Environ Prot, 2018, 44(3): 56-60. |
[1] | WEN Jie, DU Yuan-xin, WU An-bo, YANG Guang-rong, LU Min, AN Hua-ming, NAN Hong. Identification and Expression Pattern Analysis of Rosa roxburghii SOD Gene Family [J]. Biotechnology Bulletin, 2024, 40(5): 153-166. |
[2] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[3] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[4] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[5] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
[6] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[7] | WANG Qi, HU Zhe, FU Wei, LI Guang-zhe, HAO Lin. Regulation of Burkholderia sp. GD17 on the Drought Tolerance of Cucumber Seedlings [J]. Biotechnology Bulletin, 2023, 39(3): 163-175. |
[8] | YU Bo, QIN Xiao-hui, ZHAO Yang. Mechanisms of Plant Sensing Drought Signals [J]. Biotechnology Bulletin, 2023, 39(11): 6-17. |
[9] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[10] | FENG Ce-ting, JIANG Lyu, LIU Xin-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[11] | YAN Meng-yu, WEI Xiao-wei, CAO Jing, LAN Hai-yan. Cloning of Basic Helix-loop-helix(bHLH)Transcription Factor Gene SabHLH169 in Suaeda aralocaspica and Analysis of Its Resistances to Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 328-339. |
[12] | GUAN Zhi-xiu, WANG Yan, LIANG Cheng-gang, WEI Chun-yu, HUANG Juan, CHEN Qing-fu. Identification of FtCBL Genes in Fagopyrum tataricum and Their Stress Responses to Drought and High Calcium [J]. Biotechnology Bulletin, 2022, 38(8): 101-109. |
[13] | CHEN Jia-min, LIU Yong-jie, MA Jin-xiu, LI Dan, GONG Jie, ZHAO Chang-ping, GENG Hong-wei, GAO Shi-qing. Expression Pattern Analysis of Histone Methyltransferase Under Drought Stress in Hybrid Wheat [J]. Biotechnology Bulletin, 2022, 38(7): 51-61. |
[14] | LI Yi-han, YU Lang-liu, LI Chun-yan, ZHANG Meng-meng, ZHANG Xiao-qin, FANG Yun-xia, XUE Da-wei. Whole Genome Identification of Barley NRAMP and Gene Expression Analysis Under Heavy Metal Stress [J]. Biotechnology Bulletin, 2022, 38(6): 103-111. |
[15] | LIU Zi-ran, ZHEN Zhen, CHEN Qiang, LI Yue-ying, WANG Ze, PANG Hong-bo. Research Progress in Plant Response to Cd Stress [J]. Biotechnology Bulletin, 2022, 38(6): 13-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||