Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (9): 113-122.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0514
Previous Articles Next Articles
WANG Chao1(), BAI Ru-qian1, GUAN Jun-mei1, LUO Ji-lin1, HE Xue-jiao1, CHI Shao-yi2, MA Ling1()
Received:
2024-05-29
Online:
2024-09-26
Published:
2024-09-06
Contact:
MA Ling
E-mail:1820392789@qq.com;may_ynnu@ynnu.edu.cn
WANG Chao, BAI Ru-qian, GUAN Jun-mei, LUO Ji-lin, HE Xue-jiao, CHI Shao-yi, MA Ling. Promotion of StHY5 in the Synthesis of SGAs during Tuber Turning-green of Potato[J]. Biotechnology Bulletin, 2024, 40(9): 113-122.
基因 Gene | 正向引物序列Forward primer sequence(5'-3') | 反向引物序列Reverse primer sequence(5'-3') |
---|---|---|
StActin | GGGATGGAGAAGTTTGGTGGTGG | CTTCGACCAAGGGATGGTGTAG |
StHY5 | AGATCTGGAAGCAAGGGTGAAG | CACCTGCTGTTGTGTTCTTCAG |
Table 1 Primers used in RT-qPCR
基因 Gene | 正向引物序列Forward primer sequence(5'-3') | 反向引物序列Reverse primer sequence(5'-3') |
---|---|---|
StActin | GGGATGGAGAAGTTTGGTGGTGG | CTTCGACCAAGGGATGGTGTAG |
StHY5 | AGATCTGGAAGCAAGGGTGAAG | CACCTGCTGTTGTGTTCTTCAG |
时间Time/min | A/% | B/% | 流速Flow/(mL·min-1) |
---|---|---|---|
0.00 | 95.00 | 5.00 | 0.800 |
5.00 | 60.00 | 40.00 | 0.800 |
6.00 | 0.00 | 100.00 | 0.800 |
8.00 | 0.00 | 100.00 | 0.800 |
Table 2 Eluent gradient
时间Time/min | A/% | B/% | 流速Flow/(mL·min-1) |
---|---|---|---|
0.00 | 95.00 | 5.00 | 0.800 |
5.00 | 60.00 | 40.00 | 0.800 |
6.00 | 0.00 | 100.00 | 0.800 |
8.00 | 0.00 | 100.00 | 0.800 |
Fig. 1 Phylogenetic tree and homologous sequence alignment of StHY5 in Solanaceae A: Phylogenetic tree analysis and homologous sequence alignment of StHY5, Solanum lycopersicum and Solanum tuberosum are marked in red; B: homologous sequence alignment of StHY5, the amino acid sequence interval(89-140 aa)marked in green is the bZIP-HY5-like domain
Fig. 2 Temporal and spatial expression analysis (A), in-situ hybridization (B) and subcellular localization analysis (C) of StHY5 in potato Different lowercases indicate significant differences at the 0.05 level. The same below
名称 Name | 序列 Sequence | 数量 Account | 功能 Function |
---|---|---|---|
MBS | CAACTG | 1 | 参与干旱诱导的MYB结合位点MYB binding site involved in drought-inducibility |
LTR | CCGAAA | 1 | 参与低温响应的顺式作用元件Cis-acting element involved in low-temperature responsiveness |
GC-motif | CCCCCG | 1 | 参与缺氧特异性诱导的增强剂Enhancer-like element involved in anoxic specific inducibility |
P-box | CCTTTTG | 1 | 赤霉素反应元件Gibberellin-responsive element |
GT1-motif | GGTTAA | 1 | 光敏元件Light-sensitive element |
TCCC-motif | TCTCCCT | 1 | 光响应元件的一部分Part of a light responsive element |
TCA-element | CCATCTTTTT/TCAGAAGAGG | 3 | 参与水杨酸反应的顺式作用元件Cis-acting element involved in salicylic acid responsiveness |
ABRE | ACGTG/GCAACGTGTC | 3 | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness |
ARE | AAACCA | 2 | 厌氧诱导所需的顺式作用元件Cis-acting regulatory element essential for the anaerobic induction |
G-Box | CACGTT | 3 | 参与光反应的顺式作用元件Cis-acting regulatory element involved in light responsiveness |
CGTCA-motif | CGTCA | 5 | 茉莉酸甲酯响应元件Cis-acting regulatory element involved in the MeJA-responsiveness |
TGACG-motif | TGACG | 5 | 茉莉酸甲酯响应元件Cis-acting regulatory element involved in the MeJA-responsiveness |
Table 3 Cis-acting elements of StHY5 promoter in potato
名称 Name | 序列 Sequence | 数量 Account | 功能 Function |
---|---|---|---|
MBS | CAACTG | 1 | 参与干旱诱导的MYB结合位点MYB binding site involved in drought-inducibility |
LTR | CCGAAA | 1 | 参与低温响应的顺式作用元件Cis-acting element involved in low-temperature responsiveness |
GC-motif | CCCCCG | 1 | 参与缺氧特异性诱导的增强剂Enhancer-like element involved in anoxic specific inducibility |
P-box | CCTTTTG | 1 | 赤霉素反应元件Gibberellin-responsive element |
GT1-motif | GGTTAA | 1 | 光敏元件Light-sensitive element |
TCCC-motif | TCTCCCT | 1 | 光响应元件的一部分Part of a light responsive element |
TCA-element | CCATCTTTTT/TCAGAAGAGG | 3 | 参与水杨酸反应的顺式作用元件Cis-acting element involved in salicylic acid responsiveness |
ABRE | ACGTG/GCAACGTGTC | 3 | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness |
ARE | AAACCA | 2 | 厌氧诱导所需的顺式作用元件Cis-acting regulatory element essential for the anaerobic induction |
G-Box | CACGTT | 3 | 参与光反应的顺式作用元件Cis-acting regulatory element involved in light responsiveness |
CGTCA-motif | CGTCA | 5 | 茉莉酸甲酯响应元件Cis-acting regulatory element involved in the MeJA-responsiveness |
TGACG-motif | TGACG | 5 | 茉莉酸甲酯响应元件Cis-acting regulatory element involved in the MeJA-responsiveness |
Fig. 3 SGAs content and StHY5 expression in green turning treatment A-B: CIP183 SGAs intensity of potato peel and flesh. C-D: StHY5 expression of CIP183 potato peel and flesh. E-F: CIP150 SGAs intensity of potato peel and flesh.G-H: StHY5 expression in CIP150 potato peel and flesh
Fig. 4 Transcriptome analysis of potato tuber CIP150 before and after flesh turning green A: Volcanic map analysis. B: KEGG enrichment analysis. C: GO enrichment analysis
Fig. 5 Differential expression of SGAs synthetic genes in potato tuber CIP150 before and after flesh turning green StAACT to St7-DR2 is the synthesis pathway of cholesterol, StGAME7 to StSGT3 is the synthesis pathway of SGAs, the arrow indicates the sequence of genes involved in the SGAs synthesis pathway
Fig. 6 Yeast single hybridization analysis between StHY5 and StSGT1/GAME1 and StGAME4 promoters L, W and H indicate Leu, Trp and His respectively, and 10-1, 10-2 and 10-3 indicate the point plate concentration of yeast OD600 when it is adjusted to 0.1, 0.01 and 0.001, respectively
[1] | Hardigan MA, Laimbeer FPE, Newton L, et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato[J]. Proc Natl Acad Sci USA, 2017, 114(46): E9999-E10008. |
[2] | Menoble C. Research and comparative analysis about potato production situation between China and continents in the world[C]. Agricultural Engineering, 2011. |
[3] |
Begum SS, Das D, Gour NK, et al. Computational modelling of nanotube delivery of anti-cancer drug into glutathione reductase enzyme[J]. Sci Rep, 2021, 11(1): 4950.
doi: 10.1038/s41598-021-84006-1 pmid: 33654109 |
[4] |
何虎翼, 唐洲萍, 杨鑫, 等. 马铃薯淀粉合成与降解研究进展[J]. 生物技术通报, 2019, 35(4): 101-107.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0829 |
He HY, Tang ZP, Yang X, et al. Research progress on potato starch synthesis and degradation[J]. Biotechnol Bull, 2019, 35(4): 101-107. | |
[5] | 聂碧华, 谢从华, 聂先舟. 马铃薯抗病毒机制研究进展[J]. 园艺学报, 2012, 39(9): 1703-1714. |
Nie BH, Xie CH, Nie XZ. Progress in research on the resistance mechanism against viruses in potatoes[J]. Acta Hortic Sin, 2012, 39(9): 1703-1714. | |
[6] | 邓仁菊, 邓宽平, 何天久, 等. 马铃薯主要病害抗性育种研究进展[J]. 西南农业学报, 2014, 27(3):1337-1342. |
Deng RJ, Deng KP, He TJ, et al. Progresses of main diseases resistance breeding in potato[J]. Southwest China J Agric Sci, 2014, 27(3): 1337-1342. | |
[7] | Wang T, He WS, Jiang HG, et al. The effects of nitrogen, phosphorus and potassium application on yield and starch content of potato plants[J]. Soil Fertil Sci China, 2016(3): 80-86. |
[8] | Dhalsamant K, Singh CB, Lankapalli R. A review on greening and glycoalkaloids in potato tubers: potential solutions[J]. J Agric Food Chem, 2022, 70(43): 13819-13831. |
[9] | Percival G, Dixon GR. Glycoalkaloid concentrations in aerial tubers of potato(Solanum tuberosum L.)[J]. J Sci Food Agric, 1996, 70(4): 439-448. |
[10] | Bamberg J, Moehninsi, Navarre R, et al. Variation for tuber greening in the diploid wild potato Solanum microdontum[J]. Am J Potato Res, 2015, 92(3): 435-443. |
[11] | Baur S, Bellé N, Hausladen H, et al. Quantitation of toxic steroidal glycoalkaloids and newly identified saponins in post-harvest light-stressed potato(Solanum tuberosum L.) varieties[J]. J Agric Food Chem, 2022, 70(27): 8300-8308. |
[12] | Ostreikova TO, Kalinkina OV, Bogomolov NG, et al. Glycoalkaloids of plants in the family solanaceae(Nightshade)as potential drugs[J]. Pharm Chem J, 2022, 56(7): 948-957. |
[13] |
Itkin M, Heinig U, Tzfadia O, et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes[J]. Science, 2013, 341(6142): 175-179.
doi: 10.1126/science.1240230 pmid: 23788733 |
[14] |
Akiyama R, Umemoto N, Mizutani M. Recent advances in steroidal glycoalkaloid biosynthesis in the genus Solanum[J]. Plant Biotechnol, 2023, 40(3): 185-191.
doi: 10.5511/plantbiotechnology.23.0717b pmid: 38293253 |
[15] | Yang LW, Jiang ZM, Jing YJ, et al. PIF1 and RVE1 form a transcriptional feedback loop to control light-mediated seed germination in Arabidopsis[J]. J Integr Plant Biol, 2020, 62(9): 1372-1384. |
[16] | Zhou P, Song MF, Yang QH, et al. Both PHYTOCHROME RAPIDLY REGULATED1(PAR1)and PAR2 promote seedling photomorphogenesis in multiple light signaling pathways[J]. Plant Physiol, 2014, 164(2): 841-852. |
[17] | Yu JW, Rubio V, Lee NY, et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability[J]. Mol Cell, 2008, 32(5): 617-630. |
[18] |
Jiao YL, Lau OS, Deng XW. Light-regulated transcriptional networks in higher plants[J]. Nat Rev Genet, 2007, 8(3): 217-230.
doi: 10.1038/nrg2049 pmid: 17304247 |
[19] |
Gangappa SN, Botto JF. The BBX family of plant transcription factors[J]. Trends Plant Sci, 2014, 19(7): 460-470.
doi: 10.1016/j.tplants.2014.01.010 pmid: 24582145 |
[20] | Koornneef M, Rolff E, Spruit CJP. Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana(L.) heynh[J]. Z Für Pflanzenphysiol, 1980, 100(2): 147-160. |
[21] | Oyama T, Shimura Y, Okada K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl[J]. Genes Dev, 1997, 11(22): 2983-2995. |
[22] | Jing YJ, Zhang D, Wang X, et al. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation[J]. Plant Cell, 2013, 25(1): 242-256. |
[23] |
Gangappa SN, Botto JF. The multifaceted roles of HY5 in plant growth and development[J]. Mol Plant, 2016, 9(10): 1353-1365.
doi: S1674-2052(16)30134-4 pmid: 27435853 |
[24] | Wang WH, Wang PW, Li XJ, et al. The transcription factor SlHY5 regulates the ripening of tomato fruit at both the transcriptional and translational levels[J]. Hortic Res, 2021, 8(1): 83. |
[25] | Wang CC, Meng LH, Gao Y, et al. Manipulation of light signal transduction factors as a means of modifying steroidal glycoalkaloids accumulation in tomato leaves[J]. Front Plant Sci, 2018, 9: 437. |
[26] | Itkin M, Rogachev I, Alkan N, et al. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato[J]. Plant Cell, 2011, 23(12): 4507-4525. |
[27] | Wan LB, Gao HD, Gao HL, et al. Selective extraction and determination of steroidal glycoalkaloids in potato tissues by electromembrane extraction combined with LC-MS/MS[J]. Food Chem, 2022, 367: 130724. |
[28] | Zhu GT, Wang SC, Huang ZJ, et al. Rewiring of the fruit metabolome in tomato breeding[J]. Cell, 2018, 172(1/2): 249-261.e12. |
[29] |
Jakoby M, Weisshaar B, Dröge-Laser W, et al. bZIP transcription factors in Arabidopsis[J]. Trends Plant Sci, 2002, 7(3): 106-111.
doi: 10.1016/s1360-1385(01)02223-3 pmid: 11906833 |
[30] | Kurihara Y, Makita Y, et al. Time-course transcriptome study reveals mode of bZIP transcription factors on light exposure in Arabidopsis[J]. Int J Mol Sci, 2020, 21(6): 1993. |
[31] |
Agarwal P, Baranwal VK, Khurana P. Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a TabZIP under abiotic stress[J]. Sci Rep, 2019, 9(1): 4608.
doi: 10.1038/s41598-019-40659-7 pmid: 30872683 |
[32] |
Chattopadhyay S, Ang LH, Puente P, et al. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression[J]. Plant Cell, 1998, 10(5): 673-683.
doi: 10.1105/tpc.10.5.673 pmid: 9596629 |
[33] | Sa QL, Li WB, Sun YR. Transcriptional regulation of the G-box and G-box-binding proteins in plant gene expression[J]. Plant Physiol Commun, 2003, 39(1): 89-92. |
[34] |
McCue KF, Allen PV, Shepherd LVT, et al. Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis[J]. Phytochemistry, 2007, 68(3): 327-334.
doi: 10.1016/j.phytochem.2006.10.025 pmid: 17157337 |
[35] |
McCue KF, Allen PV, Shepherd LVT, et al. The primary in vivo steroidal alkaloid glucosyltransferase from potato[J]. Phytochemistry, 2006, 67(15): 1590-1597.
pmid: 16298403 |
[36] | McCue KF, Shepherd LVT, Allen PV, et al. Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase[J]. Plant Sci, 2005, 168(1): 267-273. |
[37] | Shakya R, Navarre DA. LC-MS analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars(Solanum tuberosum)[J]. J Agric Food Chem, 2008, 56(16): 6949-6958. |
[38] |
Iijima Y, Watanabe B, Sasaki R, et al. Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit[J]. Phytochemistry, 2013, 95: 145-157.
doi: 10.1016/j.phytochem.2013.07.016 pmid: 23941899 |
[39] |
Cárdenas PD, Sonawane PD, Heinig U, et al. The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism[J]. Phytochemistry, 2015, 113: 24-32.
doi: 10.1016/j.phytochem.2014.12.010 pmid: 25556315 |
[40] | Sawai S, Ohyama K, Yasumoto S, et al. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato[J]. Plant Cell, 2014, 26(9): 3763-3774. |
[41] |
Cárdenas PD, Sonawane PD, Pollier J, et al. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway[J]. Nat Commun, 2016, 7: 10654.
doi: 10.1038/ncomms10654 pmid: 26876023 |
[1] | SHEN Peng, GAO Ya-Bin, DING Hong. Identification and Expression Analysis of SAT Gene Family in Potato(Solanum tuberosum L.) [J]. Biotechnology Bulletin, 2024, 40(9): 64-73. |
[2] | SONG Bing-fang, LIU Ning, CHENG Xin-yan, XU Xiao-bin, TIAN Wen-mao, GAO Yue, BI Yang, WANG Yi. Identification of Potato G6PDH Gene Family and Its Expression Analysis in Damaged Tubers [J]. Biotechnology Bulletin, 2024, 40(9): 104-112. |
[3] | XIA Shi-xuan, GENG Ze-dong, ZHU Guang-tao, ZHANG Chun-zhi, LI Da-wei. Quick Detection of Potato Pollen Viability Based on Deep Learning [J]. Biotechnology Bulletin, 2024, 40(9): 123-130. |
[4] | MAO Xiang-hong, LU Yao, FAN Xiang-bin, DU Pei-bing, BAI Xiao-dong. Genetic Diversity Analysis of Potato Varieties Based on SSR Fluorescent Marker Capillary Electrophoresis and Construction of Molecular Identity Card [J]. Biotechnology Bulletin, 2024, 40(9): 131-140. |
[5] | YUAN Lan, HUANG Ya-nan, ZHANG Bei-ni, XIONG Yu-meng, WANG Hong-yang. High-throughput Sample Preparation Method for the Identification of Potato Ploidy Using Flow Cytometry [J]. Biotechnology Bulletin, 2024, 40(9): 141-147. |
[6] | SONG Qian-na, DUAN Yong-hong, FENG Rui-yun. Establishment of CRISPR/Cas9-mediated Highly Efficient Gene Editing System in Microtubers of Potatoes [J]. Biotechnology Bulletin, 2024, 40(9): 33-41. |
[7] | WANG Ke-ran, YAN Jun-jie, LIU Jian-feng, GAO Yu-lin. Application and Risk of RNAi Technology in Potato Insect Pest Management [J]. Biotechnology Bulletin, 2024, 40(9): 4-10. |
[8] | ZHANG Xiao-mei, ZHOU Nan-ling, ZHANG Sai-hang, WANG Chao, SHEN Yu-long, GUAN Jun-mei, MA Ling. Cloning and Expression Analysis of StDREBs Gene in Solanum tuberosum L. [J]. Biotechnology Bulletin, 2024, 40(9): 42-50. |
[9] | MAN Quan-cai, MENG Zi-nuo, LI Wei, CAI Xin-ru, SU Run-dong, FU Chang-qing, GAO Shun-juan, CUI Jiang-hui. Identification and Expression Analysis of AQP Gene Family in Potato [J]. Biotechnology Bulletin, 2024, 40(9): 51-63. |
[10] | WU Juan, WU Xiao-juan, WANG Pei-jie, XIE Rui, NIE Hu-shuai, LI Nan, MA Yan-hong. Screening and Expression Analysis of ERF Gene Related to Anthocyanin Synthesis in Colored Potato [J]. Biotechnology Bulletin, 2024, 40(9): 82-91. |
[11] | QIAO Yan, YANG Fang, REN Pan-rong, QI Wei-liang, AN Pei-pei, LI Qian, LI Dan, XIAO Jun-fei. Cloning and Function Analysis of the ScDHNS Gene of Crotonase/Enoyl-CoA Superfamily from a Wild Potato Species [J]. Biotechnology Bulletin, 2024, 40(9): 92-103. |
[12] | ZHANG Zhen, LI Qing, XU Jing, CHEN Kai-yuan, ZHANG Chun-zhi, ZHU Guang-tao. Construction and Application of Potato Mitochondrial Targeted Expression Vector [J]. Biotechnology Bulletin, 2024, 40(5): 66-73. |
[13] | MEI Xian-jun, SONG Hui-yang, LI Jing-hao, MEI Chao, SONG Qian-na, FENG Rui-yun, CHEN Xi-ming. Cloning and Expression Analysis of StDof5 Gene in Potato [J]. Biotechnology Bulletin, 2024, 40(3): 181-192. |
[14] | ZHANG Chun-zhi, ZHOU Qian, WU Yao-yao, SHANG Yi, HUANG San-wen. Genomics Study Accelerates the Revolution of Potato Breeding [J]. Biotechnology Bulletin, 2024, 40(10): 11-18. |
[15] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||