Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (10): 1-8.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0695
ZHANG Chun-zhi1(), ZHOU Qian2, WU Yao-yao3, SHANG Yi4, HUANG San-wen1()
Received:
2024-07-21
Online:
2024-10-26
Published:
2024-11-20
Contact:
ZHANG Chun-zhi, HUANG San-wen
E-mail:zhangchunzhi01@caas.cn;huangsanwen@caas.cn
ZHANG Chun-zhi, ZHOU Qian, WU Yao-yao, SHANG Yi, HUANG San-wen. Genomics Study Accelerates the Revolution of Potato Breeding[J]. Biotechnology Bulletin, 2024, 40(10): 1-8.
[1] |
Stokstad E. The new potato[J]. Science, 2019, 363(6427): 574-577.
doi: 10.1126/science.363.6427.574 pmid: 30733400 |
[2] |
徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望[J]. 中国农业科学, 2017, 50(6): 990-1015.
doi: 10.3864/j.issn.0578-1752.2017.06.003 |
Xu JF, Jin LP. Advances and perspectives in research of potato genetics and breeding[J]. Sci Agric Sin, 2017, 50(6): 990-1015.
doi: 10.3864/j.issn.0578-1752.2017.06.003 |
|
[3] |
Wallace JG, Rodgers-Melnick E, Buckler ES. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics[J]. Annu Rev Genet, 2018, 52: 421-444.
doi: 10.1146/annurev-genet-120116-024846 pmid: 30285496 |
[4] | Bethke PC, Nassar AMK, Kubow S, et al. History and origin of Russet Burbank(netted gem)a sport of Burbank[J]. Am J Potato Res, 2014, 91(6): 594-609. |
[5] | Lindhout P, Meijer D, Schotte T, et al. Towards F1 hybrid seed potato breeding[J]. Potato Res, 2011, 54(4): 301-312. |
[6] | 李颖, 李广存, 李灿辉, 等. 二倍体杂种优势马铃薯育种的展望[J]. 中国马铃薯, 2013, 27(2): 96-99. |
Li Y, Li GC, Li CH, et al. Prospects of diploid hybrid breeding in potato[J]. Chin Potato J, 2013, 27(2): 96-99. | |
[7] | Jansky SH, Charkowski AO, Douches DS, et al. Reinventing potato as a diploid inbred line-based crop[J]. Crop Sci, 2016, 56(4): 1412-1422. |
[8] | Spooner DM, Ghislain M, Simon R, et al. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes[J]. Bot Rev, 2014, 80(4): 283-383. |
[9] | The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato[J]. Nature, 2011, 475(7355): 189-195. |
[10] | Sharma SK, Bolser D, de Boer J, et al. Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps[J]. G3, 2013, 3(11): 2031-2047. |
[11] | Pham GM, Hamilton JP, Wood JC, et al. Construction of a chromosome-scale long-read reference genome assembly for potato[J]. GigaScience, 2020, 9(9): giaa100. |
[12] | Yang XH, Zhang LK, Guo X, et al. The gap-free potato genome assembly reveals large tandem gene clusters of agronomical importance in highly repeated genomic regions[J]. Mol Plant, 2023, 16(2): 314-317. |
[13] |
Zhou Q, Tang D, Huang W, et al. Haplotype-resolved genome analyses of a heterozygous diploid potato[J]. Nat Genet, 2020, 52(10): 1018-1023.
doi: 10.1038/s41588-020-0699-x pmid: 32989320 |
[14] | Aversano R, Contaldi F, Ercolano MR, et al. The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives[J]. Plant Cell, 2015, 27(4): 954-968. |
[15] | Leisner CP, Hamilton JP, Crisovan E, et al. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity[J]. Plant J, 2018, 94(3): 562-570. |
[16] |
Zhang CZ, Yang ZM, Tang D, et al. Genome design of hybrid potato[J]. Cell, 2021, 184(15): 3873-3883.e12.
doi: 10.1016/j.cell.2021.06.006 pmid: 34171306 |
[17] | van Lieshout N, van der Burgt A, de Vries ME, et al. Solyntus, the new highly contiguous reference genome for potato(Solanum tuberosum)[J]. G3, 2020, 10(10): 3489-3495. |
[18] |
Sun HQ, Jiao WB, Krause K, et al. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar[J]. Nat Genet, 2022, 54(3): 342-348.
doi: 10.1038/s41588-022-01015-0 pmid: 35241824 |
[19] |
Bao ZG, Li CH, Li GC, et al. Genome architecture and tetrasomic inheritance of autotetraploid potato[J]. Mol Plant, 2022, 15(7): 1211-1226.
doi: 10.1016/j.molp.2022.06.009 pmid: 35733345 |
[20] | Wang F, Xia ZQ, Zou ML, et al. The autotetraploid potato genome provides insights into highly heterozygous species[J]. Plant Biotechnol J, 2022, 20(10): 1996-2005. |
[21] | Hoopes G, Meng XX, Hamilton JP, et al. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity[J]. Mol Plant, 2022, 15(3): 520-536. |
[22] |
Li YP, Colleoni C, Zhang JJ, et al. Genomic analyses yield markers for identifying agronomically important genes in potato[J]. Mol Plant, 2018, 11(3): 473-484.
doi: S1674-2052(18)30049-2 pmid: 29421339 |
[23] | Hardigan MA, Laimbeer FPE, Newton L, et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato[J]. Proc Natl Acad Sci U S A, 2017, 114(46): E9999-E10008. |
[24] | Tang D, Jia YX, Zhang JZ, et al. Genome evolution and diversity of wild and cultivated potatoes[J]. Nature, 2022, 606(7914): 535-541. |
[25] | Bozan I, Achakkagari SR, Anglin NL, et al. Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species[J]. Proc Natl Acad Sci U S A, 2023, 120(31): e2211117120. |
[26] | 宋伯符, 唐洪明. 用种子生产马铃薯[M]. 北京: 中国农业科技出版社, 1988. |
Song BF, Tang HM. Produce potato from seeds[M]. Beijing: China Agricultural Science and Technology Press, 1988. | |
[27] |
Takayama S, Isogai A. Self-incompatibility in plants[J]. Annu Rev Plant Biol, 2005, 56: 467-489.
pmid: 15862104 |
[28] | Kubo KI, Entani T, Takara A, et al. Collaborative non-self recognition system in S-RNase-based self-incompatibility[J]. Science, 2010, 330(6005): 796-799. |
[29] |
Ye MW, Peng Z, Tang D, et al. Generation of self-compatible diploid potato by knockout of S-RNase[J]. Nat Plants, 2018, 4(9): 651-654.
doi: 10.1038/s41477-018-0218-6 pmid: 30104651 |
[30] |
Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, et al. Overcoming self-incompatibility in diploid potato using CRISPR-Cas9[J]. Front Plant Sci, 2019, 10: 376.
doi: 10.3389/fpls.2019.00376 pmid: 31001300 |
[31] |
Zhang CZ, Wang P, Tang D, et al. The genetic basis of inbreeding depression in potato[J]. Nat Genet, 2019, 51(3): 374-378.
doi: 10.1038/s41588-018-0319-1 pmid: 30643248 |
[32] | Eggers EJ, van der Burgt A, et al. Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato[J]. Nat Commun, 2021, 12(1): 4141. |
[33] | Ma L, Zhang CZ, Zhang B, et al. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes[J]. Nat Commun, 2021, 12(1): 4142. |
[34] | Hosaka K, Hanneman RE. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor(Sli)gene[J]. Euphytica, 1998, 99(3): 191-197. |
[35] | Hosaka K, Hanneman RE. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor(Sli)gene on the potato genome using DNA markers[J]. Euphytica, 1998, 103(2): 265-271. |
[36] |
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm[J]. Nat Protoc, 2009, 4(7): 1073-1081.
doi: 10.1038/nprot.2009.86 pmid: 19561590 |
[37] |
Wu YY, Li DW, Hu Y, et al. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding[J]. Cell, 2023, 186(11): 2313-2328.e15.
doi: 10.1016/j.cell.2023.04.008 pmid: 37146612 |
[38] |
Lian Q, Tang D, Bai ZY, et al. Acquisition of deleterious mutations during potato polyploidization[J]. J Integr Plant Biol, 2019, 61(1): 7-11.
doi: 10.1111/jipb.12748 |
[39] | Adams JR, de Vries ME, Zheng CZ, et al. Little heterosis found in diploid hybrid potato: the genetic underpinnings of a new hybrid crop[J]. G3, 2022, 12(6): jkac076. |
[40] |
Li DW, Lu XY, Zhu YH, et al. The multi-omics basis of potato heterosis[J]. J Integr Plant Biol, 2022, 64(3): 671-687.
doi: 10.1111/jipb.13211 |
[1] | WANG Chao, BAI Ru-qian, GUAN Jun-mei, LUO Ji-lin, HE Xue-jiao, CHI Shao-yi, MA Ling. Promotion of StHY5 in the Synthesis of SGAs during Tuber Turning-green of Potato [J]. Biotechnology Bulletin, 2024, 40(9): 113-122. |
[2] | XIA Shi-xuan, GENG Ze-dong, ZHU Guang-tao, ZHANG Chun-zhi, LI Da-wei. Quick Detection of Potato Pollen Viability Based on Deep Learning [J]. Biotechnology Bulletin, 2024, 40(9): 123-130. |
[3] | MAO Xiang-hong, LU Yao, FAN Xiang-bin, DU Pei-bing, BAI Xiao-dong. Genetic Diversity Analysis of Potato Varieties Based on SSR Fluorescent Marker Capillary Electrophoresis and Construction of Molecular Identity Card [J]. Biotechnology Bulletin, 2024, 40(9): 131-140. |
[4] | YUAN Lan, HUANG Ya-nan, ZHANG Bei-ni, XIONG Yu-meng, WANG Hong-yang. High-throughput Sample Preparation Method for the Identification of Potato Ploidy Using Flow Cytometry [J]. Biotechnology Bulletin, 2024, 40(9): 141-147. |
[5] | SONG Qian-na, DUAN Yong-hong, FENG Rui-yun. Establishment of CRISPR/Cas9-mediated Highly Efficient Gene Editing System in Microtubers of Potatoes [J]. Biotechnology Bulletin, 2024, 40(9): 33-41. |
[6] | WANG Ke-ran, YAN Jun-jie, LIU Jian-feng, GAO Yu-lin. Application and Risk of RNAi Technology in Potato Insect Pest Management [J]. Biotechnology Bulletin, 2024, 40(9): 4-10. |
[7] | ZHANG Xiao-mei, ZHOU Nan-ling, ZHANG Sai-hang, WANG Chao, SHEN Yu-long, GUAN Jun-mei, MA Ling. Cloning and Expression Analysis of StDREBs Gene in Solanum tuberosum L. [J]. Biotechnology Bulletin, 2024, 40(9): 42-50. |
[8] | MAN Quan-cai, MENG Zi-nuo, LI Wei, CAI Xin-ru, SU Run-dong, FU Chang-qing, GAO Shun-juan, CUI Jiang-hui. Identification and Expression Analysis of AQP Gene Family in Potato [J]. Biotechnology Bulletin, 2024, 40(9): 51-63. |
[9] | WU Juan, WU Xiao-juan, WANG Pei-jie, XIE Rui, NIE Hu-shuai, LI Nan, MA Yan-hong. Screening and Expression Analysis of ERF Gene Related to Anthocyanin Synthesis in Colored Potato [J]. Biotechnology Bulletin, 2024, 40(9): 82-91. |
[10] | QIAO Yan, YANG Fang, REN Pan-rong, QI Wei-liang, AN Pei-pei, LI Qian, LI Dan, XIAO Jun-fei. Cloning and Function Analysis of the ScDHNS Gene of Crotonase/Enoyl-CoA Superfamily from a Wild Potato Species [J]. Biotechnology Bulletin, 2024, 40(9): 92-103. |
[11] | SHEN Peng, GAO Ya-Bin, DING Hong. Identification and Expression Analysis of SAT Gene Family in Potato(Solanum tuberosum L.) [J]. Biotechnology Bulletin, 2024, 40(9): 64-73. |
[12] | SONG Bing-fang, LIU Ning, CHENG Xin-yan, XU Xiao-bin, TIAN Wen-mao, GAO Yue, BI Yang, WANG Yi. Identification of Potato G6PDH Gene Family and Its Expression Analysis in Damaged Tubers [J]. Biotechnology Bulletin, 2024, 40(9): 104-112. |
[13] | SUN Zhi-yong, DU Huai-dong, LIU Yang, MA Jia-xin, YU Xue-ran, MA Wei, YAO Xin-jie, WANG Min, LI Pei-fu. Genome-wide Association Analysis of γ-aminobutyric Acid in Rice Grains [J]. Biotechnology Bulletin, 2024, 40(8): 53-62. |
[14] | CUI Yuan-yuan, WANG Zhao-yi, BAI Shuang-yu, REN Yu-zhao, DOU Fei-fei, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng. Genome-wide Identification of Non-specific Phospholipase C Gene Family in Hordeum vulgare L. and Stress Expression Analysis at Seedling Stage [J]. Biotechnology Bulletin, 2024, 40(8): 74-82. |
[15] | ZANG Wen-rui, MA Ming, CHE Gen, HASI Agula. Genome-wide Identification and Expression Pattern Analysis of BZR Transcription Factor Gene Family of Melon [J]. Biotechnology Bulletin, 2024, 40(7): 163-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||