Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (2): 35-40.
• Reviews and Monographs • Previous Articles Next Articles
Zhao Yan Chen Genghua Zhou Wei Hou Yali Yang Zhonghua
Received:
2012-09-05
Revised:
2013-02-27
Online:
2013-02-26
Published:
2013-02-27
Contact:
杨忠华,男,教授,博士生导师,研究方向:生物化工;E-mail :yangzh@wust.edu.cn
Zhao Yan, Chen Genghua, Zhou Wei, Hou Yali, Yang Zhonghua . Progress of Cellulase and Cellulase Gene Research[J]. Biotechnology Bulletin, 2013, 0(2): 35-40.
[1] 杨忠华, 李方芳, 曹亚飞, 等. 微藻减排CO2 制备生物柴油的 研究进展[J]. 生物加工过程, 2012, 10(1):61-67. [2] Carvalho W, Canilha L, Silva SS. Semi-continuous xylitol bioproduction in sugarcane bagasse hydrolysate:effect of nutritional supplementation[J]. Brazilian Journal of Pharmaceutical Sciences, 2007, 43 (1):47-53. [3] Lynd LR, Laser MS, Bransby D, et al. How biotech can transformbiofuels[J]. Nature Biotechnology, 2008, 26(2):169-172. [4] Sheehan J, Himmel M. Enzymes, energy, and the environment:a strategic perspective on the US department of energy’s research and development activities for bioethanol[J]. Biotechnology Progress, 1999, 15:817-827. [5] Wilson DB. Cellulases and biofuels[J]. Current Opinion in Biotechnology, 2009, 20:295-299. [6] 汤斌, 陈中碧, 张庆庆, 等. 玉米秸秆发酵燃料乙醇预处理条件 的优化[J]. 食品与发酵工业, 2008, 34(6):65-67. [7] 李旭东, 王霞. 玉米秸秆预处理研究[J]. 食品与发酵工业, 2008, 34(4):111-114. [8] 江丹, 李旭晖, 朱明军. 造纸污泥同步糖化发酵产乙醇的研 究[J]. 食品与发酵工业, 2009, 35(11):32-35. [9] Singhania RR, Sukumaran RK, Patel AK, et al. Advancement and 2013年第2期39 赵燕等:纤维素酶及其基因研究进展 comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases[J]. Enzyme and Microbial Technology, 2010, 46:541-549. [10] ?hgren K, Bura R, Lesnicki G, et al. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover[J]. Process Biochemistry, 2007, 42(5):834-839. [11] Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization[J]. Advances Biochemical Engineering /Biotechnology, 2007, 108:95-120. [12] Eriksson T, Karlsson J, Tjerneld F. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I(Cel7 A)and endoglucanase I(Cel7 B)of Trichoderma reesei[J]. Applied Biochemistry and Biotechnology, 2002, 101: 41-60. [13] V?ljama?e P, Kipper K, Pettersson G, et al. Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics[J]. Biotechnol Bioeng, 2003, 84(2):254-257. [14] 于寒颖, 刘杏忠. 纤维素酶及其基因结构特征与功能的关 系[J]. 林产化学与工业, 2009, 29(3):120-126. [15] Stahlberg J, Johansson G, Pettersson G. A binding-sitedeficient, catalytically active, core protein of endoglucanase III from the culture filtrates of T. reesei[J]. European Journal of Biochemistry, 1988, 173:179-183. [16] Saloheimo M, Lehtovaara P, Penttila M, et al. EG III, a new endoglucanase from T. reesei:the characterization of both gene and enzyme[J]. Gene, 1988, 63:11-21. [17] Linder M, Teeri TT. Cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93:12251-12258. [18] Kleman-leyer KM, Siika-Aho M, Teeri TT, et al. The cellulose EG I and CBH II of T. reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size[J]. Applied Environmental Microbiology, 1996, 62(8):2883-2887. [19] Gao P, Liu J, Zhang Y, et al. Structural changes in macromolecules of native cellulose during biodegradation[J]. Progress in Natural Science, 1998, 8(1):117-124. [20] Xiao ZZ, Gao PJ, Qu YB, et al. Cellulose-binding domain of endoglucanase III from Trichoderma reesei disrupting the structure of cellulose[J]. Biotechnology Letters, 2001, 23:711-715. [21] Bhat MK, Bhat S. Cellulose degrading enzymes and their potential industrial applications[J]. Biotechnology Advances, 1997, 15(3): 583-620. [22] 候爱华, 吴斌辉. 细菌纤维小体的结构和功能[J]. 纤维素科 学与技术, 2002, 10(1):50-55. [23] 陈燕勤, 毛培宏, 曾宪贤. 细菌纤维素酶结构和功能的研 究[J]. 化学与生物工程, 2004, 6:4-6. [24] Desvaus M. The cellulosome of Clostridium cellulolyticum[J]. Enzyme and Microbial Technology, 2005, 37(4):373-385. [25] Demain AL, Newcomb M, Wu JHD. Cellulase, clostridia, and ethanol[J]. Microbiology and Molecular Biology Reviews, 2005, 69(1):124-154. [26] Wang YY, Fu ZB, Ng KL, et al. Enhancement of excretory production of an exoglucanase from Escherichia coli with phage shock protein A(PspA)overexpression[J]. Journal Microbiology and Biotechnology, 2011, 21(6):637-645. [27] Saratale GD, Saratale RG, Lo YC, et al. Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production[J]. Biotechnology Progress, 2010, 26(2):406-416. [28] Kim JO, Park SR, Lim WJ, et al. Cloning and characterization of thermostable endoglucanase(Cel8Y)from the hypert thermophilic Aquifex aeolicus VF5[J]. Biophysical Research Communications, 2000, 279(2):420-426. [29] Hakamada Y, Endo K, Takizawa S, et al. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacilluis circulan[J]. Biocheimica et Biophysica Acta, 2002, 1570:174-180. [30] 蔡勇, 阿依木古丽, 臧荣鑫, 等. 芽孢杆菌CY1-3 株碱性纤维 素酶基因celC 的克隆及其在大肠杆菌中的表达[J]. 中国兽 医科学, 2006, 36(12):961-966. [31] Rahman Z, Shida Y, Furukawa T, et al. Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular β-glucosidase I[J]. Bioscience Biotechnology Biochemistry, 2009, 73(5): 1083-1089. [32] Throndset W, Kim S, Bower B, et al. Flow cytometric sorting of the filamentous fungus Trichoderma reesei for improved strains[J]. 生物技术通报 Biotechnology Bulletin 2013年第2期40 Enzyme Microbial Technology, 2010, 47:335-341. [33] Kitagawa T, Kohda K, Tokuhiro K, et al. Identification of genes that enhance cellulase protein production in yeast[J]. Journal of Biotechnology, 2011, 151:194-203. [34] Lv DD, Wang W, Wei DZ. Construction of two vectors for gene expression in Trichoderma reesei[J]. Plasmid, 2012, 67:67-71. [35] Throndset W, Bowera B, Caguiata R, et al. Isolation of a strain of Trichoderma reesei with improved glucoamylase secretion by flow cytometric sorting[J]. Enzyme Microbial Technology, 2010, 47 (7):342-347. [36] Chan AK, Wang YY, Ng KL, et al. Cloning and characterization of a novel cellobiase gene, cba3, encoding the first known β-glucosidase of glycoside hydrolase family 1 of Cellulomonas biazotea[J]. Gene, 2012, 493(1):52-61. [37] 李旺, 张光勤. 纤维素酶基因工程研究进展[J]. 生物技术通 报, 2011(8):51-54. [38] 许晓菁, 王祥河, 何雨青. 秸秆燃料乙醇的关键问题与对策[J]. 食品与发酵工业, 2010, 36(7):108-113. |
[1] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[2] | ZHANG Jing, ZHANG Hao-rui, CAO Yun, HUANG Hong-ying, QU Ping, ZHANG Zhi-ping. Research Progress in Thermophilic Microorganisms for Cellulose Degradation [J]. Biotechnology Bulletin, 2023, 39(6): 73-87. |
[3] | MA Yu-qian, SUN Dong-hui, YUE Hao-feng, XIN Jia-yu, LIU Ning, CAO Zhi-yan. Identification, Heterologous Expression and Functional Analysis of a GH61 Family Glycoside Hydrolase from Setosphaeria turcica with the Assisting Function in Degrading Cellulose [J]. Biotechnology Bulletin, 2023, 39(4): 124-135. |
[4] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[5] | ZHANG Kai-ping, LIU Yan-li, TU Mian-liang, LI Ji-wei, WU Wen-biao. Optimization of Producing Cellulase by Aspergillus fumigatus A-16 and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2022, 38(9): 215-225. |
[6] | WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect [J]. Biotechnology Bulletin, 2022, 38(4): 217-229. |
[7] | LI Zhi-hao, ZHANG Ge, MO Zhi-jie, DENG Shuai-jun, LI Jia-yi, ZHANG Hai-bo, LIU Xiao-hui, LIU Hao-bao. Effects of a Xylanase-producing Bacillus cereus on the Composition and Fermented Products of Cigar Leaves [J]. Biotechnology Bulletin, 2022, 38(2): 105-112. |
[8] | ZHANG Gong-you, WANG Yi-han, GUO Min, ZHANG Ting-ting, WANG Bing, LIU Hong-mei. Isolation and Identification of a Cellulase-producing Endophytic Fungus in Paris polyphylla var. yunnanensis [J]. Biotechnology Bulletin, 2022, 38(2): 95-104. |
[9] | WANG Bo-ya, JIANG Yong, HUANG Yan, CAO Ying, HU Shang-lian. Cloning and Functional Analysis of BeCesA4 in Bambusa emeiensis [J]. Biotechnology Bulletin, 2022, 38(11): 185-193. |
[10] | TANG Hao, SUN Can, LI Yuan-qiu, LUO Chao-bing. Screening and Genome Sequencing of Cellulytic Bacterium Raoultella ornithinolytica LL1 [J]. Biotechnology Bulletin, 2021, 37(6): 85-96. |
[11] | ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method [J]. Biotechnology Bulletin, 2021, 37(3): 162-174. |
[12] | HU Fang, DONG Xu, SHI Chang-wei, WU Xue-dong. Progress in Ultrasound Intensification for Enzymatic Hydrolysis of Lignocellulose [J]. Biotechnology Bulletin, 2021, 37(10): 234-244. |
[13] | GU Han-qi, SHAO Ling-zhi, LIU Ran, LIU Xiao-guang, LI Ling, LIU Qian, LI Jie, ZHANG Ya-li. Lipidomics Analysis of Saccharomyces cerevisiae with Tolerance to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2021, 37(1): 15-23. |
[14] | LIU Deng, LIU Jun-hong. Research Progress of Thermophilic Lignocellulase in Cellulose Ethanol Production [J]. Biotechnology Bulletin, 2020, 36(8): 185-193. |
[15] | FENG Guang-zhi, SHI Hui, LIU Bo, WU Yu-ting, WANG Yue-lin, SHI Yu. Screening and Identification of Cellulase-producing Strains Isolated from Crayfish Intestine [J]. Biotechnology Bulletin, 2020, 36(2): 65-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||