[1] Afrache H, Gouret P, Ainouche S, et al. The butyrophilin(BTN)gene family:from milk fat to the regulation of the immune response[J]. Immunogenetics, 2012, 64(11):781-794.
[2] Heid HW, Winter S, Bruder G, et al. Butyrophilin, an apical plasma membrane-associated glycoprotein characteristic of lactating mammary glands of diverse species[J]. Biochim Biophys Acta, 1983, 728(2):228-238.
[3] Jeong J, Rao AU, Xu J, et al. The PRY/SPRY/B30. 2 domain of butyrophilin 1A1(BTN1A1)binds to xanthine oxidoreductase:implications for the function of BTN1A1 in the mammary gland and other tissues[J]. J Biol Chem, 2009, 284(33):22444-22456.
[4] Rhodes DA, Stammers M, Malcherek G, et al. The cluster of BTN genes in the extended major histocompatibility complex[J]. Genomics, 2001, 71(3):351-362.
[5] Arnett HA, Viney JL. Immune modulation by butyrophilins[J]. Nature reviews Immunology, 2014, 14(8):559-569.
[6] Rhodes DA, Reith W, Trowsdale J. Regulation of Immunity by Buty-rophilins[J]. Annu Revi Immunol, 2016, 28(34):151-172.
[7] Wang H, Morita CT. Sensor function for butyrophilin 3A1 in prenyl pyrophosphate stimulation of human Vgamma2Vdelta2 T cells[J]. Journal of Immunology, 2015, 195(10):4583-4594.
[8] Sandstrom A, Peigne CM, Leger A, et al. The intracellular B30. 2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human V gamma 9V delta 2T Cells[J]. Immunity, 2014, 40(4):490-500.
[9] Valentonyte R, Hampe J, Huse K, et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2[J]. Nature Genetics, 2005, 37(4):357-364.
[10] Chapoval AI, Smithson G, Brunick L, et al. BTNL8, a butyrophilin-like molecule that costimulates the primary immune response[J]. Molecular Immunology, 2013, 56(4):819-828.
[11] Cong HL, Jiang Y, Tien P. Identification of the myelin oligodendrocyte glycoprotein as a cellular receptor for rubella virus[J]. Journal of Virology, 2011, 85(21):11038-11047.
[12] Smith IA, Knezevic BR, Ammann JU, et al. BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation[J]. J Immunol, 2010, 184(7):3514-3525.
[13] Sarter K, Leimgruber E, Gobet F, et al. Btn2a2, a T cell immunomodulatory molecule coregulated with MHC class II genes[J]. J Exp Med, 2016, 213(2):177-187.
[14] Swanson RM, Gavin MA, Escobar SS, et al. Butyrophilin-like 2 modulates B7 costimulation to induce Foxp3 expression and regulatory T cell development in mature T cells[J]. Journal of Immunology, 2013, 190(5):2027-2035.
[15] Barbee SD, Woodward MJ, Turchinovich G, et al. Skint-1 is a highly specific, unique selecting component for epidermal T cells[J]. Proc Natl Acad Sci USA, 2011, 108(8):3330-3335.
[16] Turchinovich G, Hayday AC. Skint-1 identifies a common molecular mechanism for the development of interferon-gamma-secreting versus interleukin-17-secreting gammadelta T cells[J]. Immunity, 2011, 35(1):59-68.
[17] Bas A, Swamy M, Abeler-Dorner L, et al. Butyrophilin-like 1 encodes an enterocyte protein that selectively regulates functional interactions with T lymphocytes[J]. Proc Natil Acad Sci USA, 2011, 108(11):4376-4381.
[18] Lebrero-Fernandez C, Bergstrom JH, Pelaseyed T, et al. Murine butyrophilin-like 1 and btnl6 form heteromeric complexes in small intestinal epithelial cells and promote proliferation of local T lymphocytes[J]. Frontiers in Immunology, 2016, 7(12):1-13.
[19] Gorodkin J, Cirera S, Hedegaard J, et al. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1, 021, 891 expressed sequence tags[J]. Genome Biology, 2007, 8(4):90-105.
[20] Jobin C, Sartor R. The I kappa B/NF-kappa B system:a key determinant of mucosal inflammation and protection[J]. Am J Physiol-Cell Physiol, 2000, 278(3):C451-C462.
[21] Rogler G, Brand K, Vogl D, et al. Nuclear factor kappa B is activated in macrophages and epithelial cells of inflamed intestinal mucosa[J]. Gastroenterology, 1998, 115(2):357-369.
[22] Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappa B in inflammatory bowel disease[J]. Gut, 1998, 42(4):477-484.
[23] Swindell SR, Plasterer TN. SEQMAN. Contig assembly[J]. Methods in Molecular Biology, 1997, 70(70):75-89.
[24] Di Marco Barros R, Roberts NA, Dart RJ, et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments[J]. Cell, 2016, 167(1):203-218.
[25] Barclay AN. Membrane proteins with immunoglobulin-like domains - a master superfamily of interaction molecules[J]. Seminars in Immunology, 2003, 15(4):215-223.
[26] Perfetto L, Gherardini PF, Davey NE, et al. Exploring the diversity of SPRY/B30. 2-mediated interactions[J]. Trends in Biochemical Sciences, 2013, 38(1):38-46.
[27] Eckmann L, Neish AS. NF-kappa B and Mucosal Homeostasis[J]. Current Topics in Microbiology & Immunology, 2011, 349(349):145-158.
[28] Peterson LW, Artis D. Intestinal epithelial cells:regulators of barrier function and immune homeostasis[J]. Nature Reviews Immunology, 2014, 14(3):141-153.
[29] Gitter AH, Bendfeldt K, Schulzke JD, et al. Leaks in the epithelial barrier caused by spontaneous and TNF-alpha-induced single-cell apoptosis[J]. Faseb Journal, 2000, 14(12):1749-1753.
[30] Karin M, Greten FR. NF-kappaB:linking inflammation and immunity to cancer development and progression[J]. Nature Reviews Immunology, 2005, 5(10):749-759.
[31] Sun SC, Ganchi PA, Ballard DW, et al. NF-κB controls expression of inhibitor I κB α:evidence for an inducible autoregulatory pathway[J]. Science, 1993, 259(5103):1912-1915.
[32] Lawrence T, Bebien M, Liu GY, et al. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation[J]. Nature, 2005, 434(7037):1138-1143.
[33] Majumdar I, Paul J. The deubiquitinase A20 in immunopathology of autoimmune diseases[J]. Autoimmunity, 2014, 47(5):307-319. |