生物技术通报 ›› 2016, Vol. 32 ›› Issue (11): 30-37.doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.004
柳莹, 高丽, 冯俊荣
收稿日期:
2016-02-23
出版日期:
2016-11-25
发布日期:
2016-11-11
作者简介:
柳莹,女,硕士,研究方向:分子生物学;E-mail:liuyinger@sina.com
基金资助:
LIU Ying, GAO Li, FENG Jun-rong
Received:
2016-02-23
Published:
2016-11-25
Online:
2016-11-11
摘要: 近年来,高通量测序技术的发展及大数据分析能力的提高使得生物基因组水平上的研究日趋广泛。通过基因组测序、单核苷酸多态性识别、种群转录组学研究等方法,有助于进一步了解生物群体内部的适应性状相关基因的进化历程及调控机制,对于理论研究与生产实际均具有重大意义。通过海洋鱼类种群基因组学的研究,可以加深对于微观进化的重要环节,如遗传分化的产生、杂交带的维系及物种形成等机制的理解。因此,相关研究将有助于人们更好地理解海洋生物的进化过程,并且为水产养殖业的发展及海洋渔业资源的管理和保护提供理论依据。
柳莹, 高丽, 冯俊荣. 海洋鱼类种群基因组学研究进展[J]. 生物技术通报, 2016, 32(11): 30-37.
LIU Ying, GAO Li, FENG Jun-rong. Research Progress on Population Genomics of Marine Fishes[J]. Biotechnology Bulletin, 2016, 32(11): 30-37.
[1] Feder ME, Mitchell-Olds T. Evolutionary and ecological functional genomics[J]. Nature Reviews Genetics, 2003, 4:649-655. [2] Ellegren H, Sheldon BC. Genetic basis of fitness differences in natural populations[J]. Nature, 2008, 452:169-175. [3] Wray GA. Genomics and the evolution of phenotypic traits[J]. Annu Rev Ecol, Evol Syst, 2013, 44:55-72. [4] Barrett RD, Hoekstra HE. Molecular spandrels:tests of adaptation at the genetic level[J]. Nat Rev Genet, 2011, 12:767-780. [5] Cossins AR, Crawford DL. Opinion-Fish as models for environmental genomics[J]. Nature Reviews Genetics, 2005, 6:324-333. [6] Canario AVM, Bargelloni L, Volckaert F, et al. Genomics toolbox for farmed fish[J]. Reviews in Fisheries Science, 2008, 16:3-15. [7] Aparicio S, Chapman J, Stupka E, et al. Wholegenome shotgun assembly and analysis of the genome of Fugu rubripes[J]. Science, 2002, 297:1301-1310. [8] Kasahara M, Naruse K, Sasaki S, et al. The medaka draft genome and insights into vertebrate genome evolution[J]. Nature, 2007, 447:714-719. [9] Star B, Nederbragt AJ, Jentoft S, et al. The genome sequence of Atlantic cod reveals a unique immune system[J]. Nature, 2011, 477:7-10. [10] Henkel CV, Burgerhout E, de Wijze DL, et al. Primitive duplicate hox clusters in the European eel’s genome[J]. PLoS One, 2012, 7:e32231. [11] Henkel CV, Dirks RP, de Wijze DL, et al. 2012b. First draft genome sequence of the Japanese eel, Anguilla japonica[J]. Gene, 2012, 511:195-201. [12] Jones FC, Grabherr MG, Chan YF, et al. The genomic basis of adaptive evolution in threespine sticklebacks[J]. Nature, 2012, 484:55-61. [13] Amemiya CT, Alfoldl J, Lee AP, et al. The African coelacanth genome provides insights into tetrapod evolution[J]. Nature, 2013, 496:311-316. [14] Nakamura Y, Mori K, Saitoh K, et al. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna[J]. Proceedings of the National Academy of Sciences, 2013, 110:11061-11066. [15] Chen S, Zhang G, Shao C, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to benthic lifestyle[J]. Nature Genetics, 2014, 46:253-260. [16] Ao J, Mu Y, Xiang L, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation[J]. PLoS genetics, 2015, 11(4):e1005118. [17] Karlsen BO, Klingan K, Emblem Å, et al. Genomic divergence between the migratory and stationary ecotypes of Atlantic cod[J]. Molecular Ecology, 2013, 22:5098-5111. [18] Toonen RJ, Puritz JB, Forsman ZH, et al. ezRAD:a simplified method for genomic genotyping in non-model organisms[J]. PeerJ, 2013, 1:e203. [19] Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10:57-63. [20] Good JM. Reduced representation methods for subgenomic enrichment and next-generation sequencing[J]. Methods in Molecular Biology, 2011, 772:85-103. [21] Davey JW, Hohenlohe PA, Etter PD, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing[J]. Nature Reviews Genetics, 2011, 12:499-510. [22] Vasemagi A, Primmer CR. Challenges for identifying functionally important genetic variation:the promise of combining complementary research strategies[J]. Molecular Ecology, 2005, 14:3623-3642. [23] Campbell NR, Narum SR. Identification of novel SNPs in Chinook salmon and variation among life history types[J]. Transactions of the American Fisheries Society, 2008, 137:96-106. [24] Moen T, Hayes B, Nilsen F, et al. Identification and characterization of novel SNP markers in Atlantic cod:evidence for directional selection[J]. BMC Genetics, 2008, 9:18. [25] Hubert S, Higgins B, Borza T, et al. Development of a SNP resource and a genetic linkage map for Atlantic cod(Gadus morhua)[J]. BMC Genomics, 2010, 11:191. [26] Helyar SJ, Limborg MT, Bekkevold D, et al. SNP discovery using next generation transcriptomic sequencing in Atlantic herring(Clupea harengus)[J]. PLoS One, 2012, 7:e42089. [27] Lamichhaney S, Martinez Barrio A, Rafati N, et al. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring[J]. Proceedings of the National Academy of Sciences, 2012, 109:1-6. [28] Pujolar JM, Jacobsen MW, Frydenberg J, et al. A resource of genome-wide single nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel[J]. Molecular Ecology Resources, 2013, 13:706-714. [29] Khaitovich P, Enard W, Lachmann M, et al. Evolution of primate gene expression[J]. Nat Rev Genet, 2006, 7:693-702. [30] Schulte PM. Environmental adaptations as windows on molecular evolution[J]. Comparative Biochemistry and Physiology B Biochemistry & Molecular Biology, 2001, 128:597-611. [31] Fangue NA, Hofmeister M, Schulte PM. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus[J]. Journal of Experimental Biology, 2006, 209:2859-2872. [32] Fisher MA, Oleksiak MF. Convergence and divergence in gene expression among natural populations exposed to pollution[J]. BMC Genomics, 2007, 8:108. [33] Beaumont MA. Adaptation and speciation:what can F ST tell us?[J] . Trends in Ecology & Evolution, 2005, 20:435-440. [34] Poulsen NA, Nielsen EE, Schieruo MH, et al. Long-term stability and effective population size in North Sea and Baltic Sea cod(Ga-dus morhua)[J]. Molecular Ecology, 2006, 15:321-331. [35] Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genetics:finding the genes underlying ecologically important traits[J]. Heredity, 2008, 100:158-170. [36] Nielsen EE, Hemmer-Hansen J, Larsen PF, et al. Population genomics of marine fishes:identifying adaptive variation in space and time[J]. Molecular Ecology, 2009, 18:3128-3150. [37] Basu N, Todgham AE, Ackerman PA, et al. Heat shock protein genes and their functional significance in fish[J]. Gene, 2002, 295:173-183. [38] Hemmer-Hansen J, Nielsen EE, Frydenberg J, et al. Adaptive divergence in a high gene flow environment:Hsc70 variation in the European flounder(Platichthys flesus)[J]. Heredity, 2007, 99:592-600. [39] Nielsen EE, Hemmer-Hansen J, Poulsen NA, et al. Genetic signatures of local directional selection in a high gene flow marine organism, the Atlantic cod(Gadus morhua)[J]. BMC Evoluionary Biology, 2009, 9:276. [40] Limborg MT, Helyar SJ, De Bruyn M, et al. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring(Clupea harengus)[J]. Molecular Ecology, 2012, 21:3686-3703. [41] Storz JF. Using genome scans of DNA polymorphism to infer adaptive population divergence[J]. Molecular Ecology, 2005, 14:671-688. [42] Case RAJ, Hutchinson WF, Hauser L, et al. Association between growth and Pan I* genotype within Atlantic cod full-sibling families[J]. Transactions of the American Fisheries Society, 2006, 135:241-250. [43] Jonsdottir IG, Marteinsdottir G, Pampoulie C. Relation of growth and condition with the Pan I locus in Atlantic cod(Gadus morhua L.)around Iceland[J]. Marine Biology, 2008, 154:867-874. [44] Pampoulie C, Jakobsdottir KB, Marteinsdottir G, et al. Are vertical behaviour patterns related to the pantophysin locus in the Atlantic cod(Gadus morhua L.)[J]. Behav Genet, 2008, 38:76-81. [45] Canino MF, O’Reilly PT, Hauser L, et al. Genetic differentiation in walleye pollock(Theragra chalcogramma)in response to selection at the pantophysin(Pan I)locus[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62:2519-2529. [46] Yang Z, Bielawski J. Statistical methods for detecting molecular adaptation[J]. Trends Ecol Evol, 2000, 15:496-503. [47] Streelman JT, Kocher TD. Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia[J]. Physiological Genomics, 2002, 9:1-4. [48] Almuly R, Skopal T, Funkenstein B. Regulatory regions in the promoter and first intron of Sparus aurata growth hormone gene:Repression of gene activity by a polymorphic minisatellite[J]. Comp Biochem Physiol Part D Geqenomics Proteomics, 2008, 3(1):43-50. [49] Wray GA. The evolutionary significance of cis-regulatory mutation[J]. Nature Reviews Genetics, 2007, 8:206-216. [50] Nielsen EE, Hansen MM. Waking the dead:the value of popula-tion genetic analyses of historical samples[J]. Fish and Fisher-ies, 2008, 9:450-461. [51] Prufer KF, Racimo N, Patterson F, et al. The complete genome sequence of a Neanderthal from the Altai Mountains[J]. Nature, 2014, 505:43-49. [52] Flaxman SM, Feder JL, Nosil P. Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow[J]. Evolution, 2013, 67:2577-2591. [53] Hohenlohe PA, Basshan S, Etter PD, et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags[J]. PLoS Genetics, 2010, 6:e1000862. [54] Jones FC, Grabherr MG, Chan YF, et al. The genomic basis of adaptive evolution in threespine sticklebacks[J]. Nature, 2012, 484:55-61. [55] Johannesson K, André C. Life on the margin:genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea[J]. Molecular Ecology, 2006, 15(8):2013-2029. [56] Hancock AM, Witonsky DB, Alkorta-Aranburu G, et al. Adaptations to climate-mediated selective pressures in humans[J]. PLoS Genetics, 2011, 7:e1001375. [57] Pujolar JM, Jacobsen MW, Als TD, et al. Genome-wide single-generation signatures of local selection in the panmictic European eel[J]. Molecular Ecology, 2014, 23:2514-2528. [58] Gienapp P, Teplitsky C, Alho JS, et al. Climate change and evolution:disentangling environmental and genetic responses[J]. Molecular Ecology, 2008, 17:167-178. [59] Therkildsen NO, Hemmer-Hansen J, Hedeholm RB, et al. Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua[J]. Evolutionary Applications, 2013, 6:690-705. [60] Hemmer-Hansen J, Therkildsen NO, Pujolar JM. Population genomics of marine fishes:next-generation prospects and challenges[J]. Biological Bulletin, 2014, 227:117-132. [61] Pujolar JM, Jacobsen MW, Als TD, et al. Assessing patterns of hybridizarion between North Atlantic eels using diagnostic single nucleotide polymorphisms[J]. Heredity, 2014, 112:627-637. [62] Kijewska A, Burzynski A, Wenne R. Molecular identification of European flounder(Platichthys flesus)and its hybrids with European plaice(Pleuronectes platessa)[J]. Ices Journal of Marine Science, 2009, 66:902-906. [63] Feder JL, Egan SP, Nosil P. The genomics of speciation-with-gene-flow[J]. Trends in Genetics, 2012, 28:342-350. [64] Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow[J]. Molecular Ecology, 2014, 23:3133-3157. [65] Gompert Z, Buerkle CA. Bayesian estimation of genomic clines[J]. Molecular Ecology, 2011, 20:2111-2127. [66] Lang GI, Rice DP, Hickman MJ, et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations[J]. Nature, 2013, 500(7464):571-574. [67] Feder JL, Patrik N. The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation[J]. Evolution, 2010, 64(6):1729-1747. [68] Flaxman SM, Feder JL, Nosil P. Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow[J]. Evolution, 2013, 67:2577-2591. [69] Yeaman S, Whitlock JC. The genetic architecture of adaptation under migration-selection balance[J]. Evolution, 2011, 65:1897-1911. [70] Cutter AD, Payseur BA. Genomic signatures of selection at linked sites:unifying disparity among species[J]. Nature Reviews Genetics, 2013, 14:262-274. [71] Schoener TW. The newest synthesis:understanding the interplay of evolutionary and ecological dynamics[J]. Science, 2011, 331:426. [72] Groger JP, Rountree RA, Thygesen UH, et al. Geolocation of Atlantic cod(Gadus morhua)movements in the Gulf of Maine using tidal information[J]. Fisheries Oceanography, 2007, 16, 317-335. [73] Pampoulie C, Jakobsdottir KB, Marteinsdottir G, et al. Are vertical behaviour patterns related to the pantophysin locus in the Atlantic cod(Gadus morhua L.)?[J]. Behav Genet, 2008, 38:76-81. [74] Therkildsen NO, Hemmer-Hansen J, Als TD. Microevolution in time and space:SNP analysis of historical DNA reveals dynamic signatures of selection in Atlantic cod[J]. Molecular Ecology, 2013, 22:2424-2440. [75] Bourret V, O’Reilly PT, Carr JW, et al. Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon(Salmo salar)population following introgression by farmed escapees[J]. Heredity, 2011, 106:500-510. [76] Nielsen EE, Bekkevold D. The memory remains:application of historical DNA for scaling biodiversity loss[J]. Molecular Ecology, 2012, 21:1539-1541. [77] Ferraresso S, Bonaldo A, Parma L, et al. Exploring the larval transcriptome of the common sole(Solea solea)[J]. BMC Genomics, 2013, 14:315. [78] Dalziel AC, Schulte PM. Ecological proteomics:finding molecular markers that matter[J]. Mol Ecol, 2012, 21:3382-3384. [79] Crozier LG, Hutchings JA. Plastic and evolutionary responses to climate change in fish[J]. Evolutionary Applications, 2014, 7:68-87. [80] Hemmer-Hansen J, Therkildsen NO, Meldrup D, et al. Conservation marine biodiversity:insights from life-history trait candidate genes in Atlantic cod(Gadus morhua)[J]. Conservation Genetics, 2014, 15:213-228. [81] Limborg MT, Helyar SJ, De Bruyn M, et al. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring(Clupea harengus)[J]. Molecular Ecology, 2012, 21:3686-3703. [82] Milano I, Babbucci M, Cariani A, et al. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations(Merluccius merluccius)[J]. Mol Ecol, 2014, 23:118-135. [83] McCoy RC, Garud NR, Kelley J, et al. Genomic inference accura-tely predicts the timing and severity of a recent bottleneck in a non-model insect population[J]. Mol Ecol, 2014, 23:136-150. |
[1] | 余世洲, 曹领改, 王世泽, 刘勇, 边文杰, 任学良. 烟草种质基因分型核心SNP标记的开发[J]. 生物技术通报, 2023, 39(3): 89-100. |
[2] | 周晓楠, 徐金青, 雷雨晴, 王海庆. 基于GBS-seq的青藏扁蓿豆SNP标记开发[J]. 生物技术通报, 2022, 38(4): 303-310. |
[3] | 郭丽丽, 李昱莹, 郭大龙, 侯小改. 重要花卉植物高密度遗传连锁图谱构建研究进展[J]. 生物技术通报, 2021, 37(1): 246-254. |
[4] | 余钧剑, 迟美丽, 贾永义, 刘士力, 竺俊全, 顾志敏. 四引物扩增受阻突变体系PCR技术及其在动植物遗传育种研究中的应用[J]. 生物技术通报, 2020, 36(5): 32-38. |
[5] | 李晓凯, 范一星, 乔贤, 张磊, 王凤红, 王志英, 王瑞军, 张燕军, 刘志红, 王志新, 何利兵, 李金泉, 苏蕊, 张家新. 山羊基因组与遗传变异图谱研究进展[J]. 生物技术通报, 2020, 36(4): 175-184. |
[6] | 张一中, 范昕琦, 杨慧勇, 张晓娟, 邵强, 梁笃, 郭琦, 柳青山, 杜维俊. 基于简化基因组测序高粱育种材料亲缘关系的分析[J]. 生物技术通报, 2020, 36(12): 21-33. |
[7] | 黄龙, 吴本丽, 何吉祥, 陈静, 宋光同, 汪翔, 张烨, 武松. 中华鳖MyoD1基因SNP鉴定及其与生长性状的关联分析[J]. 生物技术通报, 2019, 35(4): 76-81. |
[8] | 李晓凯 ,王贵 ,乔贤 ,范一星 ,张磊 ,马宇浩 ,聂瑞雪 ,王瑞军 ,何利兵 ,苏蕊. 全基因组测序在重要家畜上的研究进展[J]. 生物技术通报, 2018, 34(6): 11-21. |
[9] | 管俊娇, 杨晓洪, 张建华, 王江民, 张鹏, 李彦刚. 云南粳稻遗传多样性及群体结构分析[J]. 生物技术通报, 2018, 34(1): 90-96. |
[10] | 颜璐茜,李佳蔓,员涛,周安佩,纵丹,李旦,辛培尧,何承忠. 滇杨遗传多样性的SRAP分析[J]. 生物技术通报, 2016, 32(4): 159-167. |
[11] | 龚静, 柳纯洁, 缪小平, 郭安源. 人类长链非编码RNA相关SNP鉴定与功能预测的研究进展[J]. 生物技术通报, 2015, 31(11): 27-34. |
[12] | 张引红, 李慧芳, 朱文奇. 鸭脂联素基因的单核苷酸多态性研究分析[J]. 生物技术通报, 2013, 0(5): 126-129. |
[13] | 王清瑶, 饶华春, 刁勇, 杨会勇. 等位基因特异性扩增法在SNP分型中的研究进展[J]. 生物技术通报, 2013, 0(12): 62-67. |
[14] | 李宏俊;高小玉;裴爱君;. 海洋生物单核苷酸多态性基因分型技术的研究进展[J]. , 2012, 0(08): 51-58. |
[15] | 谢云飞;解博红;杨子善;. hRFT2基因单核苷酸多态性的生物信息学分析[J]. , 2012, 0(05): 138-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||