[1] Jaeger KE, Reetz MT. Microbial lipases form versatile tools for biotechnology[J]. Trends Biotechnol, 1998, 16(9):396-403. [2] Salihu A, Alam MZ. Solvent tolerant lipases:A review[J]. Process Biochemistry, 2015, 50(1):86-96. [3] Powell LW. Developments in immobilized-enzyme technology[J]. Biotechnol Genet Eng Rev, 1984, 2:409-438. [4] Zhang WX, Liu LB, Li C, et al. Research progress in immobilized lipase technology[J]. Science and Technology of Food Industry, 2013, 21(1):43-48. [5] Martinc TW, Lagunoff D. Interactions of lysophospholipids and mast cells[J]. Nature, 1979, 279(5710):250-252. [6] Bruni A, Bigon E, Battistella A, et al. Lysophosphatidylserine as histamine releaser in mice and rats[J]. Agents and Actions, 1984, 14(5-6):619-625. [7] Horigome K, Tamori-Natori Y, Inoue K, et al. Effect of serine phospholipid structure on the enhancement of concanavalin A-induced degranulation in rat mast cells[J]. Journal of Biochemistry, 1986, 100(3):571-579. [8] Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pak J Biol Sci, 2008, 11(5):763-767. [9] Chepyshko H, Lai CP, Huang LM, et al. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice(Oryza sativa L. japonica)genome:new insights from bioinformatics analysis[J]. BMC Genomics, 2012, 13:309. [10] Kang HY, Kim JF, Kim MH, et al. MELDB:A database for micr-obial esterases and lipases[J]. FEBS Letters, 2006, 580(11):2736-2740. [11] Ma LJ, Ibrahim AS, Skory C, et al. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication [J]. PLoS Genetics, 2009, 5(7):e1000549. [12] Langin D, Laurell H, Holst LS, et al. Gene organization and primary structure of human hormone-sensitive lipase:possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90:4897-4901. [13] Pang PP, Pruitt RE, Meyerowitz EM. Molecular cloning, genomic organization, expression and evolution of 12S seed storage protein genes of Arabidopsis thaliana[J]. Plant Molecular Biology, 1988, 11(6):805-820. [14] Nardini M, Dijkstra BW. α/β Hydrolase fold enzymes:the family keeps growing[J]. Curr Opin Struct Biol, 1999, 6:732-737. [15] Ollis DL, Cheah E, Cygler M, et al. The α/β hydrolase fold[J]. Protein Engineering, 1992, 5(3):197-211. [16] Stéphane Y, Ivanova MG, Marek BA, et al. Binding of Thermomyces(Humicola)lanuginosa lipase to the mixed micelles of cis-parinaric acid/NaTDC[J]. European Journal of Biochemistry, 2002, 269(6):1613-1621. [17] Chapus C, Sémériva M, Bovier-Lapierre C, et al. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase[J]. Biochemistry, 1976, 15(23):4980-4987. [18] Verger R. ‘Interfacial activation’ of lipases:facts and artifacts[J]. Trends in Biotechnology, 1997, 15(1):32-38. [19] Svendsen A. Lipase protein engineering[J]. Biochimica et Biophysica Acta(BBA)/Protein Structure and Molecular Enzymology, 2000, 1543(2):223-238. [20] Davis BG, Boyer V. Biocatalysis and enzymes in organic synthesis[J]. Natural Product Reports, 2002, 18(6):618-640. [21] Mohamad NR, Marzuki NH, Buang NA, et al. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes[J]. Biotechnology & Biotechnological Equipment, 2015, 29(2):205-220. [22] Ghattas N, Filice M, Abidi F, et al. Purification and improvement of the functional properties of Rhizopus oryzae lipase using immobilization techniques[J]. Journal of Molecular Catalysis, 2014, 110(12):111-116. [23] Yan Y, Zhang X, Chen D. Enhanced catalysis of Yarrowia lipolytica lipase LIP2 immobilized on macroporous resin and its application in enrichment of polyunsaturated fatty acids[J]. Bioresource Technology, 2013, 131(5):179-187. [24] Aybastıer Ö, Demir C. Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene-divinylbenzene copolymer using response surface methodology[J]. Journal of Molecular Catalysis, 2010, 63(3):170-178. [25] Khoobi M, Motevalizadeh SF, Asadgol Z, et al. Polyethyleneimine-modified superparamagnetic Fe 3 O 4 nanoparticles for lipase immobilization:characterization and application[J]. Materials Chemistry and Physics, 2015, 15(1):77-86. [26] Li Y, Wang W, Han PF. Immobilization of Candida sp. 99-125 lipase onto silanized SBA-15 mesoporous materials by physical adsorption[J]. Korean J Chem Eng, 2014, 31(1):98-103. [27] Jun C, Jeon BW, Joo JC, et al. Thermostabilization of Candida antarctica lipase B by double immobilization:Adsorption on a macroporous polyacrylate carrier and R1 silaffin-mediated biosilicification[J]. Process Biochem, 2013, 8:1181-1187. [28] Adnani A, Basri M, Malek EA, et al. Optimization of lipase-catalyzed synthesis of xylitol ester by Taguchi robust design method[J]. Industrial Crops & Products, 2010, 2:350-356. [29] Zaidan UH, Rahmana MBA, Othman SS, et al. Biocatalytic production of lactose ester catalysed by mica-based immobilised lipase[J]. Food Chemistry, 2012, 131(1):199-205. [30] Esenduran G, Hall NG, Liu Z. Continuous enzymatic interesterification of milkfat with soybean oil produces a highly spreadable product rich in polyunsaturated fatty acids[J]. Eur J Lipid Sci Technol, 2015, 117(5):608-619. [31] Tecelão, C Silva J, Dubreucq E, et al. Production of human milk fat substitutes enriched in omega-3 polyunsaturated fatty acids using immobilized commercial lipases and Candida parapsilosis lipase/acyltransferase[J]. J Mol Catal B Enzym, 2010, 65(1-4):122-127. [32] Matte CR, Bussamara R, Dupont J, et al. Immobilization of Thermomyces lanuginosus lipase by different techniques on immobead 150 support:characterization and applications[J]. Appl Biochem Biotechnol, 2014, 172(5):2507-2520. [33] Damnjanović JJ, Žuža MG, Savanovićset JK, et al. Covalently immobilized lipase catalyzing high-yielding optimized geranyl butyrate synthesis in a batch and fluidized bed reactor[J]. J Mol Catal B Enzym, 2012, 75(5):50-59. [34] Gupta A, Dhakate SR, Pahwa M, et al. Geranyl acetate synthesis catalyzed by Thermomyces lanuginosus lipase immobilized on electrospun polyacrylonitrile nanofiber membrane[J]. Process Biochemistry, 2013, 48(1):124-132. [35] Sun WJ, Zhao HX, Cui FJ, et al. D-isoascorbyl palmitate:lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology[J]. Chemistry Central Journal, 2013, 7(1):114. [36] Santibáñez L, Wilson L, Illanes A. Synthesis of ascorbyl palmitate with immobilized lipase from Pseudomonas stutzeri[J]. Journal of the American Oil Chemists’ Society, 2014, 91(3):405-410. [37] Reyes-Duarte D, Lopez-Cortes N, Torres P, et al. Synthesis and properties of ascorbyl esters catalyzed by lipozyme TL IM using triglycerides as acyl donors[J]. Journal of the American Oil Chemists’ Society, 2011, 88(1):57-64. [38] Lopresto CG, Naccarato S, Albo L, et al. Enzymatic transesterifica-tion of waste vegetable oil to produce biodiesel[J]. Ecotoxicology and Environmental Safety, 2015, 121:229-235. [39] Yücel Y. Biodiesel production from pomace oil by using lipase immobilized onto olive pomace[J]. Bioresource Technology, 2011, 102(4):3977-3980. [40] Zhong X, Qian JQ, Guo H, et al. Biosynthesis of sucrose-6-acetate catalyzed by surfactant-coated Candida rugosa lipase immobilized on sol-gel supports[J]. Bioprocess Biosyst Eng, 2014, 37(5):813-818. |