生物技术通报 ›› 2016, Vol. 32 ›› Issue (11): 52-58.doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.007
陈珂1, 丁艳平2, 王建林1, 邵宝平1
收稿日期:
2016-07-04
出版日期:
2016-11-25
发布日期:
2016-11-11
作者简介:
陈珂,女,硕士研究生,研究方向:高原神经生物学;E-mail:chenk2014@lzu.edu.cn
基金资助:
CHEN Ke1, DING Yan-ping2, WANG Jian-lin1, SHAO Bao-ping1
Received:
2016-07-04
Published:
2016-11-25
Online:
2016-11-11
摘要: p53作为肿瘤抑制因子,其不仅参与遗传毒性应激调节,而且在代谢平衡调控中也发挥重要作用。当机体或细胞处于不同生理逆境时,活化的p53通过参与糖代谢、脂肪酸代谢、ROS水平等相关调节信号通路影响各种代谢途径,进而通过诱导细胞周期阻滞、修复、衰老或凋亡的发生,最终调控机体或细胞产生代谢应激。总结了近年来p53途径的相关报道,对p53与癌症、代谢综合证的关系进行了阐述,以期为进一步理解p53参与的代谢调控提供参考。
陈珂, 丁艳平, 王建林, 邵宝平. p53参与代谢调控的研究进展[J]. 生物技术通报, 2016, 32(11): 52-58.
CHEN Ke, DING Yan-ping, WANG Jian-lin, SHAO Bao-ping. Research Progress on p53-involved Metabolic Regulation[J]. Biotechnology Bulletin, 2016, 32(11): 52-58.
[1] Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours[J]. Nature, 1992, 356(6366):215-221. [2] Horn HF, Vousden KH. Coping with stress:multiple ways to activate p53[J]. Oncogene, 2007, 26(9):1306-1316. [3] Jones RG, Plas DR, Kubek S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint[J]. Mol Cell, 2005, 18(3):283-293. [4] Maddocks OD, Berkers CR, Mason SM, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells[J]. Nature, 2013, 493(7433):542-546. [5] Zoncu R, Efeyan A, Sabatini DM. mTOR:from growth signal integration to cancer, diabetes and ageing[J]. Nat Rev Mol Cell Biol, 2011, 12(1):21-35. [6] Laplante M, Sabatini DM. mTOR signaling at a glance[J]. J Cell Sci, 2009, 122(Pt 20):3589-3594. [7] 郑鹏生, 冀静. mTOR信号通路与肿瘤的研究进展[J]. 西安交通大学学报:医学版, 2010, 31(1):1-9. [8] Howell JJ, Manning BD. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis[J]. Trends Endocrinol Metab, 2011, 22(3):94-102. [9] Laplante M, Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2):274-293. [10] Huang K, Fingar DC. Growing knowledge of the mTOR signaling network[J]. Semin Cell Dev Biol, 2014, 36:79-90. [11] Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress[J]. Mol Cell, 2010, 40(2):310-322. [12] Cam M, Bid HK, Xiao L, et al. p53/TAp63 and AKT regulate mammalian target of rapamycin complex 1(mTORC1)signaling through two independent parallel pathways in the presence of DNA damage[J]. J Biol Chem, 2014, 289(7):4083-4094. [13] Agarwal S, Bell CM, Taylor SM, et al. p53 Deletion or hot-spot mut-ations enhance mTORC1 activity by altering lysosomal dynamics of TSC2 and Rheb[J]. Mol Cancer Res, 2015, 1:66-77. [14] Imamura K, Ogura T, Kishimoto A, et al. Cell cycle regulation via p53 phosphorylation by a 5’-AMP activated protein kinase activa-tor, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line[J]. Biochem Biophys Res Commun, 2001, 2:562-567. [15] Lee CW, Wong LL, Tse EY, et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells[J]. Cancer Res, 2012, 72(17):4394-4404. [16] Mungamuri SK, Yang X, Thor AD, et al. Survival signaling by Notch1:mammalian target of rapamycin(mTOR)-dependent inhibition of p53[J]. Cancer Res, 2006, 66(9):4715-4724. [17] Astle MV, Hannan KM, Ng PY, et al. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage:implications for targeting mTOR during malignancy[J]. Oncogene, 2012, 31(15):1949-1962. [18] Lee CH, Inoki K, Karbowniczek M, et al. Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53[J]. Embo J, 2007, 23:4812-4823. [19] Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health:a lifeguard with a licence to kill[J]. Nat Rev Mol Cell Biol, 2015, 16(7):393-405. [20] Li H, Jogl G. Structural and biochemical studies of TIGAR(TP53-induced glycolysis and apoptosis regulator)[J]. J Biol Chem, 2009, 284(3):1748-1754. [21] Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis[J]. Cell, 2006, 126(1):107-120. [22] Kondoh H, Lleonart ME, Gil J, et al. Glycolytic enzymes can modulate cellular life span[J]. Cancer Res, 2005, 65(1):177-185. [23] Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2[J]. Cancer Res, 2012, 72(2):560-567. [24] Wang L, Xiong H, Wu F, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth[J]. Cell Rep, 2014, 8(5):1461-1474. [25] Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression[J]. Cancer Res, 2004, 7:2627-2633. [26] Singh SK, Chen NM, Hessmann E, et al. Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity[J]. Embo J, 2015, 34(24):2985-3037. [27] Kawauchi K, Araki K, Tobiume K, et al. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation[J]. Nat Cell Biol, 2008, 10(5):611-618. [28] Boidot R, Vegran F, Meulle A, et al. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors[J]. Cancer Res, 2012, 4:939-948. [29] Bensaad K, Cheung EC, Vousden KH. Modulation of intracellular ROS levels by TIGAR controls autophagy[J]. Embo J, 2009, 28(19):3015-3026. [30] Wanka C, Steinbach JP, Rieger J. Tp53-induced glycolysis and apoptosis regulator(TIGAR)protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis[J]. J Biol Chem, 2012, 287(40):33436-33446. [31] Cheung EC, Ludwig RL, Vousden KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death[J]. Proc Natl Acad Sci USA, 2012, 50:20491-20496. [32] Jiang P, Du W, Wang X, et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase[J]. Nat Cell Biol, 2011, 13(3):310-316. [33] Siegl C, Prusty BK, Karunakaran K, et al. Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection[J]. Cell Rep, 2014, 9(3):918-929. [34] Matoba S, Kang JG, Patino WD, et al. p53 regulates mitochondrial respiration[J]. Science, 2006, 312(5780):1650-1653. [35] Jiang P, Du W, Mancuso A, et al. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence[J]. Nature, 2013, 493(7434):689-693. [36] Puzio-Kuter AM. The role of p53 in metabolic regulation[J]. Genes Cancer, 2011, 2(4):385-391. [37] Hallenborg P, Feddersen S, Madsen L, et al. The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function[J]. Expert Opin Ther Targets, 2009, 2:235-246. [38] Wang X, Zhao X, Gao X, et al. A new role of p53 in regulating lipid metabolism[J]. J Mol Cell Biol, 2013, 5(2):147-150. [39] Goldstein I, Rotter V. Regulation of lipid metabolism by p53 - fighting two villains with one sword[J]. Trends Endocrinol Metab, 2012, 23(11):567-575. [40] Zaugg K, Yao Y, Reilly PT, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress[J]. Genes Dev, 2011, 25(10):1041-1051. [41] Ide T, Brown-Endres L, Chu K, et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress[J]. Mol Cell, 2009, 36(3):379-392. [42] Liu Y, He Y, Jin A, et al. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation[J]. Proc Natl Acad Sci USA, 2014, 111(23):E2414-22. [43] Kim J, Nakasaki M, Todorova D, et al. p53 Induces skin aging by depleting Blimp1+ sebaceous gland cells[J]. Cell Death Dis, 2014, 27(5):87-97. [44] Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[J]. Cell, 2008, 134(3):451-460. [45] Yoon KA, Nakamura Y, Arakawa H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses[J]. J Hum Genet, 2004, 49(3):134-140. [46] Ambs S, Ogunfusika MO, Merriam WG, et al. Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice[J]. Proc Natl Acad Sci USA, 1998, 95(15):8823-8828. [47] Subbaramaiah K, Michaluart P, Chung WJ, et al. Resveratrol inhibits cyclooxygenase-2 transcription in human mammary epithelial cells[J]. Ann N Y Acad Sci, 1999, 889:214-223. [48] Zhuang J, Ma W, Lago CU, et al. Metabolic regulation of oxygen and redox homeostasis by p53:lessons from evolutionary biology?[J]. Free Radic Biol Med, 2012, 53(6):1279-1285. [49] Rivera A, Maxwell SA. The p53-induced gene-6(proline oxidase)mediates apoptosis through a calcineurin-dependent pathway[J]. J Biol Chem, 2005, 280(32):29346-29354. [50] Jiang L, Hickman JH, Wang SJ, et al. Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses[J]. Cell Cycle, 2015, 14(18):2881-2885. [51] Italiano D, Lena AM, Melino G, et al. Identification of NCF2/p67phox as a novel p53 target gene[J]. Cell Cycle, 2012, 11(24):4589-4596. [52] Kang MY, Kim HB, Piao C, et al. The critical role of catalase in prooxidant and antioxidant function of p53[J]. Cell Death Differ, 2013, 20(1):117-129. [53] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033. [54] Ward PS, Thompson CB. Metabolic reprogramming:a cancer hallmark even warburg did not anticipate[J]. Cancer Cell, 2012, 21(3):297-308. [55] Liu J, Zhang C, Hu W, et al. Tumor suppressor p53 and its mutants in cancer metabolism[J]. Cancer Lett, 2015, 356(2 Pt A):197-203. [56] Li T, Kon N, Jiang L, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence[J]. Cell, 2012, 149(6):1269-1283. [57] Feng Z, Levine AJ. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein[J]. Trends Cell Biol, 2010, 20(7):427-434. [58] Hasty P, Sharp ZD, Curiel TJ, et al. mTORC1 and p53:clash of the gods?[J]. Cell Cycle, 2013, 12(1):20-25. [59] Akeno N, Miller AL, Ma X, et al. p53 suppresses carcinoma progression by inhibiting mTOR pathway activation[J]. Oncogene, 2014, 27(10):589-599. [60] Pena-Rico MA, Calvo-Vidal MN, Villalonga-Planells R, et al. TP53 induced glycolysis and apoptosis regulator(TIGAR)knockdown results in radiosensitization of glioma cells[J]. Radiother Oncol, 2011, 101(1):132-139. [61] Singh RD, Patel KR, Patel PS. p53 mutation spectrum and its role in prognosis of oral cancer patients:A study from Gujarat, West India[J]. Mutat Res, 2015, 783(2016):15-26. [62] Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers[J]. Science, 2006, 314(5797):268-274. [63] 缪明永. P53突变或缺失与肿瘤代谢重编程[J]. 肿瘤代谢与营养电子杂志, 2014, 1(2):26-30. [64] Oren M, Rotter V. Mutant p53 gain-of-function in cancer[J]. Cold Spring Harb Perspect Biol, 2010, 2(2):a001107. [65] Muller PA, Vousden KH. p53 mutations in cancer[J]. Nat Cell Biol, 2013, 15(1):2-8. [66] Freed-Pastor WA, Prives C. Mutant p53:one name, many proteins[J]. Genes Dev, 2012, 26(12):1268-1286. [67] Yahagi N, Shimano H, Matsuzaka T, et al. p53 Activation in adipocytes of obese mice[J]. J Biol Chem, 2003, 278(28):25395-25400. [68] Derdak Z, Villegas KA, Harb R, et al. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease[J]. J Hepatol, 2013, 58(4):785-791. [69] Zhang X, Duan W, Lee WP, et al. Overexpression of p53 improves blood glucose control in an insulin resistant diabetic mouse model[J]. Pancreas, 2016, 45(7):1010-1017. [70] Kung CP, Leu JI, Basu S, et al. The P72R polymorphism of p53 predisposes to obesity and metabolic dysfunction[J]. Cell Rep, 2016, 14(10):2413-2425. [71] Porteiro B, Diaz-Ruiz A, Martinez G, et al. Ghrelin requires p53 to stimulate lipid storage in fat and liver[J]. Endocrinology, 2013, 154(10):3671-3679. |
[1] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[2] | 段玥彤, 王鹏年, 张春宝, 林春晶. 植物黄烷酮-3-羟化酶基因研究进展[J]. 生物技术通报, 2022, 38(6): 27-33. |
[3] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[4] | 田清尹, 岳远征, 申慧敏, 潘多, 杨秀莲, 王良桂. 植物观赏器官中类胡萝卜素代谢调控的研究进展[J]. 生物技术通报, 2022, 38(12): 35-46. |
[5] | 袁恺, 何伟, 杨云丽, 朱威宇, 彭超, 安泰, 李丽, 周卫强. 灵芝酸生物合成及代谢调控研究进展[J]. 生物技术通报, 2021, 37(8): 46-54. |
[6] | 顾阳, 谭海, 员林娜, 孙海彦, 常景玲, 李志刚. 氟化钠促进节杆菌发酵合成环磷酸腺苷的生理机制[J]. 生物技术通报, 2021, 37(5): 108-116. |
[7] | 马勤, 雷瑞峰, 迪力热巴·阿不都肉苏力, 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 安登第. 环境胁迫下内生菌与宿主代谢相互作用研究进展[J]. 生物技术通报, 2021, 37(3): 153-161. |
[8] | 包林珠, 时灿, 卢玲儿, 徐行, 周泽斌, 任建峰, 李伟明, 张庆华. 斑马鱼(Danio rerio)mapk1基因对tp53基因调控研究[J]. 生物技术通报, 2021, 37(12): 160-168. |
[9] | 孟晓建, 于建东, 郑小梅, 郑平, 李志敏, 孙际宾, 叶勤. 小分子代谢物对黑曲霉己糖激酶和丙酮酸激酶的酶活调控[J]. 生物技术通报, 2021, 37(12): 180-190. |
[10] | 解文雅, 邹世颖, 高如心, 贺晓云. 线粒体丙酮酸转运载体(MPC)研究进展[J]. 生物技术通报, 2019, 35(7): 196-201. |
[11] | 张婧柔, 邵贵芳, 王姣, 张水, 杨婷玉, 邓明华. 辣椒胞质雄性不育系线粒体基因CaATP9的克隆与表达[J]. 生物技术通报, 2019, 35(11): 9-15. |
[12] | 高越, 郭晓鹏, 杨阳, 张苗苗, 李文建, 陆栋. 生物丁醇发酵研究进展[J]. 生物技术通报, 2018, 34(8): 27-34. |
[13] | 霍桂桃, 杨艳伟, 吴曦, 刘甦苏, 李芊芊, 周舒雅, 柳全明, 王三龙, 沈月雷, 吕建军, 范昌发. p53基因敲除大鼠模型的构建及表型分析[J]. 生物技术通报, 2018, 34(8): 170-174. |
[14] | 徐岩, 韩玉乾, 于放, 刘志文, 王燕燕. 过表达长春花JAR1基因促进文朵灵和长春质碱的生物合成[J]. 生物技术通报, 2017, 33(6): 62-68. |
[15] | 郑晨华, 杜希萍, 李利君, 李天丽, 曹樱, 倪辉. 法夫酵母中产类胡萝卜素特性与其合成相关基因表达关系的研究[J]. 生物技术通报, 2016, 32(2): 123-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||