生物技术通报 ›› 2017, Vol. 33 ›› Issue (12): 30-36.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0502
赵方东, 李麟坤, 何旭升, 曾会明
收稿日期:
2017-06-14
出版日期:
2017-12-25
发布日期:
2017-12-21
作者简介:
赵方东,男,硕士研究生,研究方向:草地植物遗传育种;E-mail:fangdongzhao2012@163.com
基金资助:
ZHAO Fang-dong, LI Lin-kun, HE Xu-sheng, ZENG Hui-ming
Received:
2017-06-14
Published:
2017-12-25
Online:
2017-12-21
摘要: 虽然LEAFY COTYLEDON 1-LIKE与LEAFY COTYLEDON1同为LEAFY COTYLEDON1型的AHAP3亚基,但是与主要在胚胎发育晚期发挥重要作用的LEAFY COTYLEDON1不同,LEAFY COTYLEDON 1-LIKE在体细胞胚胎发育的早期具有把营养阶段的细胞转化为胚胎期细胞的能力。而与LEAFY COTYLEDON类基因同样具有特异性B3结构域的LEAFY COTYLEDON2转录因子,能够通过IPA-YUC生长素合成途径参与在体细胞组织中创造胚胎发生的环境。除此之外,LEAFY COTYLEDON2还通过调节ABA/GA的比例来促进胚胎的发生及其发育。胚胎晚期的WUSCHE和SHOOTMERISTEMLESS的表达相互独立但又协调的维持SAM的功能,独立于WUSCHE基因表达的KNOX途径与激素的交互作用,能够维持胚胎茎顶端分生组织中高浓度的CK和低浓度的GA环境,有利于WUSCHE-CLAVATA途径响应于CK持续产生干细胞。综上所述能够提高对胚胎发生分子调控网络的认识,在未来更深入的胚胎发生研究中奠定分子基础。
赵方东, 李麟坤, 何旭升, 曾会明. 关键基因和相关激素在植物胚胎发生前后期的作用[J]. 生物技术通报, 2017, 33(12): 30-36.
ZHAO Fang-dong, LI Lin-kun, HE Xu-sheng, ZENG Hui-ming. Roles of Key Genes and Relevant Plant Hormones in the Early and Late Stages of Plant Embryogenesis[J]. Biotechnology Bulletin, 2017, 33(12): 30-36.
[1]Suárez MF, Suárez MF, Botanik HC. Plant embryogenesis[J]. Methods in Molecular Biology, 2008, 427(1997):535-576. [2]Arnold SV, Sabala I, Bozhkov P, et al. Developmental pathways of somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture, 2002, 69(3):233-249. [3]Elhiti M, Stasolla C. Somatic embryogenesis:The molecular network regulating embryo formation[M]. New Delhi:Springer India, 2016. [4]Hübers M, Kerp H, Schneider JW, et al. Dispersed plant mesofossils from the middle Mississippian of eastern Germany:Bryophytes, pteridophytes and gymnosperms[J]. Review of Palaeobotany & Palynology, 2013, 193(3):38-56. [5]Rieu I, Laux T. Signaling pathways maintaining stem cells at the plant shoot apex[J]. Semin Cell Dev Biol, 2009, 20(9):1083-1088. [6]Bowman JL, Eshed Y. Formation and maintenance of the shoot apical meristem[J]. Trends in Plant Science, 2000, 5(3):110-115. [7]蒋文婷, 曾会明. 落地生根胎生苗发育及其相关基因研究进展[J]. 生物技术通报, 2016(7):13-20. [8]Haecker A, Laux T. Cell-cell signaling in the shoot meristem[J]. Current Opinion in Plant Biology, 2001, 4(5):441. [9]Kwong RW, Bui AQ, Lee H, et al. Leafy cotyledon1-like defines a class of regulators essential for embryo development[J]. Plant Cell, 2003, 15(1):5-18. [10]Zhu SP, Wang J, Ye JL, et al. Isolation and characterization of leafy cotyledon 1-like gene related to embryogenic competence in citrus sinensis[J]. Plant Cell Tissue Organ Cult, 2014, 119(1):1-13. [11] Wójcikowska B, Jaskó?a K, G?siorek P, et al. Leafy cotyledon2(lec2)promotes embryogenic induction in somatic tissues of Arabidopsis, via yucca-mediated auxin biosynthesis[J]. Planta, 2013, 238(3):425-440. [12]Meinke DW, Franzmann LH, Nickle TC, et al. Leafy cotyledon mutants of Arabidopsis[J]. Plant Cell, 1994, 6(8):1049-1064. [13] Stone SL, Kwong LW, Yee KM, et al. Leafy cotyledon2 encodes a B3 domain transcription factor that induces embryo development[J]. Proc Natl Acad Sci USA, 2001, 98(20):11806-11811. [14]Ledwoń A, Gaj MD. Leafy cotyledon2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells[J]. Plant Cell Reports, 2009, 28(11):1677-1688. [15]Stone SL, Braybrook SA, Paula SL, et al. Arabidopsis leafy cotyledon2 induces maturation traits and auxin activity:Implications for somatic embryogenesis[J]. Proceedings of the National Academy of Sciences, 2008, 105(8):3151-3156. [16]Yadav RK, Reddy GV. WUSCHEL protein movement and stem cell homeostasis[J]. Plant Signal Behav, 2012, 7(5):592-594. [17]Busch W, Miotk A, Ariel FD, et al. Transcriptional control of a plant stem cell niche[J]. Dev Cell, 2010, 18(5):841-853. [18]Yadav RK, Perales M, Gruel J, et al. Wuschel protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex[J]. Genes & Development, 2011, 25(19):2025-2030. [19]Cao X, He Z, Guo L, et al. Epigenetic mechanisms are critical for the regulation of wuschel expression in floral meristems[J]. Plant Physiology, 2015, 168(4):1189-1196. [20]Han P, Li Q, Zhu YX. Mutation of Arabidopsis bard1 causes meristem defects by failing to confine wuschel expression to the organizing center[J]. Plant Cell, 2008, 20(6):1482-1493. [21]Vollbrecht E, Reiser L, Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1[J]. Development, 2000, 127(14):3161. [22]Haecker A. Role of wuschel in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell, 1999, 95(6):805-815. [23]Endrizzi K, Moussian B, Haecker A, et al. The shoot meristemless gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes wuschel and zwille[J]. Plant Journal, 1996, 10(6):967-979. [24]Weigel D, Jürgens G. Stem cells that make stems[J]. Nature, 2002, 415(6873):751-754. [25]Gabor D, Anna M, Takuya S. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis[J]. Proc Natil Acad Sci, 2014, 111(40):14619-14624. [26]Schoof H, Lenhard M, et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the clavata and wuschel genes[J]. Cell, 2000, 100(6):635-644. [27] Fletcher JC, Brand U, Running MP, et al. Signaling of cell fate dec-isions by clavata3 in Arabidopsis shoot meristems[J]. Science, 1999, 283(5409):1911-1914. [28] Kondo T, Sawa S, Kinoshita A, et al. A plant peptide encoded by clv3 identified by in situ maldi-tof ms analysis[J]. Science, 2006, 313(5788):845-848. [29] Ogawa M, Shinohara H, Sakagami Y, et al. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain[J]. Science, 2008, 319(5861):294. [30]Lucas WJ, Bouchépillon S, Jackson DP, et al. Selective trafficking of knotted1 homeodomain protein and its mrna through plasmodesmata[J]. Science, 1995, 270(270):1980-1983. [31]Jackson D. Double labeling of knotted1 mrna and protein reveals multiple potential sites of protein trafficking in the shoot apex[J]. Plant Physiology, 2002, 129(4):1423-1429. [32]Lenhard M, Jürgens G, Laux T. The wuschel and shootmeristemless genes fulfil complementary roles in Arabidopsis shoot meristem regulation[J]. Development, 2002, 129(13):3195-3206. [33]Gallois JL, Woodward C, Reddy GV, et al. Combined shoot meristemless and wuschel trigger ectopic organogenesis in Arabidopsis[J]. Development, 2002, 129(13):3207-3217. [34]Scofield S, Murray JA. Knox gene function in plant stem cell niches[J]. Plant Molecular Biology, 2006, 60(6):929-946. [35]Williams L, Fletcher JC. Stem cell regulation in the Arabidopsis shoot apical meristem[J]. Curr Opin Plant Biol, 2005, 8(6):582-586. [36]Zhao Y, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis[J]. Science, 2001, 291(5502):306-309. [37]Gaj MD, Trojanowska A, Ujczak A, et al. Hormone-response mutants of Arabidopsis thaliana(L.)heynh impaired in somatic embryogenesis[J]. Plant Growth Regulation, 2006, 49(2):183-197. [38]Wang H, Caruso LV, Downie AB, et al. The embryo mads domain protein agamous-like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism[J]. Plant Cell, 2004, 16(5):1206-1219. [39]Kikuchi A, Sanuki N, Higashi K, et al. Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells[J]. Planta, 2006, 223(4):637-645. [40]Tokuji Y, Kuriyama K. Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot(Daucus carota)[J]. J Plant Physiol, 2003, 160(2):133-141. [41]Braybrook SA, Stone SL, Park S, et al. Genes directly regulated by leafy cotyledon2 provide insight into the control of embryo maturation and somatic embryogenesis[J]. Proc Natl Acad Sci U S A, 2006, 103(9):3468-3473. [42]Wójcikowska B, Gaj MD. Leafy cotyledon2 -mediated control of the endogenous hormone content:Implications for the induction of somatic embryogenesis in Arabidopsis[J]. Plant Cell, Tissue and Organ Culture, 2015, 121(1):255-258. [43] Braybrook SA, Harada JJ. LECs go crazy in embryo development[J]. Trends Plant Sci, 2008, 13(12):624-630. [44]Long J, Barton MK. Initiation of axillary and floral meristems in Arabidopsis[J]. Dev Biol, 2000, 218(2):341-353. [45]Reinhardt D, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs[J]. Plant Cell, 2000, 12(4):507-518. [46]Benkova E, Michniewicz M, Sauer M, et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation[J]. Cell, 2003, 115(5):591-602. [47]Veit B. Hormone mediated regulation of the shoot apical meristem[J]. Plant Molecular Biology, 2009, 69(4):397-408. [48]Jones B, Gunner?s SA, Petersson SV, et al. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction[J]. Plant Cell, 2010, 22(9):2956-2969. [49]Cheng ZJ, Wang L, Sun W, et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by auxin response factor3[J]. Plant Physiology, 2013, 161(1):240-251. [50]Heisler MG, Ohno C, Das P, et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem[J]. Current Biology Cb, 2005, 15(21):1899-1911. [51] Yanai O, Shani E, Dolezal K, et al. Arabidopsis knoxi proteins acti-vate cytokinin biosynthesis[J]. Curr Biol, 2005, 17:1566-1571. [52]Zhong Z, Andersen SU, Ljung K, et al. Hormonal control of the shoot stem-cell niche[J]. Nature, 2010, 465(7301):1089-1092. [53]Kieffer M, Stern Y, Cook H, et al. Analysis of the transcription factor wuschel and its functional homologue in antirrhinum reveals a potential mechanism for their roles in meristem maintenance[J]. Plant Cell, 2006, 18(3):560-573. [54]Szemenyei H, Hannon M, Long JA. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis[J]. Science, 2008, 319(5868):1384-1386. [55]Long JA, Ohno C, Smith ZR, et al. Topless regulates apical embryonic fate in Arabidopsis[J]. Science, 2006, 312(5779):1520. [56]Dodsworth S. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem[J]. Developmental Biology, 2009, 336(1):1-9. [57]Jasinski S, Piazza P, Craft J, et al. Knox action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities[J]. Current Biology Cb, 2005, 15(17):1560-1565. [58]Leibfried A, To JP, Busch W, et al. Wuschel controls meristem function by direct regulation of cytokinin-inducible response regulators[J]. Nature, 2005, 438(7071):1172-1175. [59]Sakamoto T, Kamiya N, Ueguchi-Tanaka M, et al. Knox homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem[J]. Genes & Development, 2001, 15(5):581-590. [60]Kyozuka J. Control of shoot and root meristem function by cytokinin[J]. Curr Opin Plant Biol, 2007, 10(5):442-446. [61] Yanai O, Shani E, Dolezal K, et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis[J]. Curr Biol, 2005, 17:1566-1571. [62]Gordon SP, Chickarmane VS, Ohno C, et al. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences, 2009, 106(38):16529-16534. [63]Müller R, Borghi L, Kwiatkowska D, et al. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to clv3 signaling[J]. Plant Cell, 2006, 18(5):1188-1198. [64]Brand U, Fletcher JC, Hobe M, et al. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by clv3 activity[J]. Science, 2000, 289(5479):617-619. [65]Miwa H, Kinoshita A, Fukuda H, et al. Plant meristems:Clavata3/esr-related signaling in the shoot apical meristem and the root apical meristem[J]. J Plant Res, 2009, 122(1):31-39. |
[1] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[2] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[3] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[4] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[5] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[6] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
[7] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[8] | 刘传和, 贺涵, 何秀古, 陈鑫, 刘开, 邵雪花, 赖多, 秦健, 庄庆礼, 匡石滋, 肖维强. 菠萝不同品种对低温胁迫响应差异的生理代谢机制[J]. 生物技术通报, 2023, 39(10): 219-230. |
[9] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[10] | 洪天澍, 海英, 恩和巴雅尔, 高峰. 甜瓜CmABCG8基因的表达特性分析[J]. 生物技术通报, 2022, 38(7): 178-185. |
[11] | 张鸿雁, 林国莉, 李如莲, 纪晓琦. 番茄果腐病拮抗菌的筛选及对番茄的防腐保鲜作用[J]. 生物技术通报, 2022, 38(3): 69-78. |
[12] | 韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24. |
[13] | 黄文坤, 于敬文, 贾建平, 彭德良. 植物激素对植物寄生线虫取食位点建立与发育的影响[J]. 生物技术通报, 2021, 37(7): 56-64. |
[14] | 詹冬梅, 朱晨, 周承哲, 黄雪婷, 赖钟雄, 郭玉琼. 茶树Gro/Tup1基因家族鉴定及外源激素和非生物胁迫下表达分析[J]. 生物技术通报, 2021, 37(12): 1-12. |
[15] | 纪超, 王晓辉, 刘训理. 盐胁迫环境下植物促生菌的作用机制研究进展[J]. 生物技术通报, 2020, 36(4): 131-143. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 404
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 240
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||