[1] Lee R, Feinbaum R, Ambros V.The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854. [2] Reinhart BJ, Weinstein EG, Rhoades MW, et al.MicroRNAs in plants[J]. Genes Dev, 2002, 16(13):1616-1626. [3] Abolfazl L, Tariq P, Songtao J, et al.Role of microRNAs and their target genes in salinity response in plants[J]. Plant Growth Regul, 2017, 82:377-390. [4] Meng Y, Shao C, Gou L, et al.Construction of microRNA- and microRNA*-mediated regulatory networks in plants[J]. RNA Biology, 2011, 8(6):1124-1148. [5] 吴涛. 日本落叶松实生苗small RNA测序、microRNA鉴定及其目标基因差异表达分析[D]. 北京:中国林业科学研究院, 2012. [6] Xin C, Liu W, Lin Q, et al.Profiling microRNA expression during multi-staged date palm(Phoenix dactylifera L.)fruit development[J]. Genomics, 2015, 105(4):242-251. [7] Zhu J, Li W, Yang W, et al.Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress[J]. Plant Cell Reports, 2013, 32(9):1339-1349. [8] Wan L, Zhang H, Lu S, et al.Transcriptome-wide identification and characterization of mi RNAs from Pinus densata[J]. BMC Genomics, 2012, 13:132. [9] Voinnet O.Origin, biogenesis, and activity of plant microRNAs[J]. Cell, 2009, 136:669-687. [10] Wu L, Zhou H, Zhang Q, et al.DNA methylation mediated by a microRNA pathway[J]. Molecular Cell, 2010, 38:465-475. [11] Khraiwesh B, Arif MA, Seumel GI, et al.Transcriptional control of gene expression by microRNAs[J]. Cell, 2010, 140:111-122. [12] Zhang Q, Li J, Sang Y, et al.Identification and characterization of micro RNAs in Ginkgo biloba var. epiphylla Mak[J]. PLoS One, 2015, 10(5):e0127148. [13] Zhang J, Xue B, Gai M, et al.Small RNA and transcriptome sequencing reveal a potential miRNA-mediated interaction network that functions during somatic embryogenesis in Lilium pumilum DC. Fisch[J]. Frontiers in Plant Science, 2017, 8:566. [14] Zhao Y, Wang M, Fu S, et al.Small RNA profiling in two Brassica napus cultivars identifies micro RNAs with oil production and development correlated expression and new small RNA classes[J]. Plant Physiology, 2012, 158(2):813-823. [15] 李崇奇. 番木瓜及巨桉等四种植物miRNA研究和生物信息学分析[D]. 海口:海南大学, 2014. [16] 王丽丽, 李利超, 孙化雨, 等. 毛竹miR164b 前体的克隆及其在叶形态建成中的功能分析[J]. 植物科学学报, 2017, 35(4):551-557. [17] Shikata M, Yamaguchi H, Sasaki K, et al.Overexpression of Arabidopsis miR157b induces bushy architecture and delayed phase transition in Torenia fournieri[J]. Planta. 2012, 236:1027-1035. [18] 董云. 油菜(Brassica napus)miRNA 的鉴定及 Bna-miR1140 表达调控机制研究[D]. 石河子:石河子大学, 2013. [19] 刘拥海, 俞乐, 丁君辉, 等. 植物激素对分枝发育的协同调控作用研究进展[J]. 植物生理学报, 2012, 48(10):941-948. [20] Miao Y, Yun D, Qiu X, et al.Identification of mi RNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis[J]. BMC Genomic, 2012, 13:421. [21] 李海荣. 朵丽蝶兰MIR172的克隆与功能分析[D]. 杭州:浙江农林大学, 2015. [22] 李晓燕. miR159和miR172表达对大岩桐花发育的调控作用及其机理研究[D]. 杭州:浙江大学, 2012. [23] 徐善坤. 猕猴桃树种在园林绿化中的应用探讨[J]. 现代园艺, 2015, (19):96-98. [24] Varkonyi G, Lough R, Moss S, et al.Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of mi R172[J]. Plant Mol Biol, 2012, 78:417-429. [25] Yang F, Zhu G, Wang Z, et al.A putative mi R172- targeted Ce APETALA2-like gene is involved in floral patterning regulation of the orchid Cymbidium ensifolium[J]. Genet Mol Res, 2015, 14:12049-12061. [26] Grigorova B, Mara C, Hollender C, et al.LEUNIG and SEUSS co-repressors regulate mi R172 expression in Arabidopsis flowers[J]. Development, 2011, 138:2451-2456. [27] 敖妍, 赵磊磊, 姜常玉, 等. 文冠果不同花朵类型植株miRNA表达差异分析[J]. 华北农学报, 2014, 29(5):16-22. [28] Xia R, Zhu H, An Y, et al.Apple mi RNAs and tasi RNAs with novel regulatory networks[J]. Genome Biol, 2012, 13(6):R47. [29] 秦力. 芦笋雌雄花发育转录组分析及性别决定相关miRNA靶基因的鉴定[D]. 杭州:浙江大学, 2016. [30] 刘元龙. 参与柑橘果实发育的miRNA和靶基因的挖掘与分析[D]. 武汉:华中农业大学, 2015. [31] 王晨. 葡萄microRNA及其靶基因的识别、鉴定及作用方式研究[D]. 南京:南京农业大学, 2012. [32] 辛成齐. 椰枣microRNA鉴定及其在果实发育过程中的表达谱研究[D]. 北京:中国科学院北京基因组研究所, 2015. [33] Yang L, Conway S, Poethig R.Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of mi R156[J]. Development, 2011, 138(2):245-249. [34] Wang J, Park M, Wang L, et al.MiRNA control of vegetative phase change in trees[J]. PloS Genet. 2011, 7:e1002012. [35] 朱建峰. 中间锦鸡儿MicroRNA发现及其目标基因鉴定与表达研究[D]. 北京:中国林业科学研究院, 2013. [36] Liu N, Wu S, Van H, et al.Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by micro RNA 167 leads to floral development defects and female sterility in tomato[J]. J Exp Bot, 2014, 65(9):2507-2520. [37] 马超. ‘金冠’苹果miRNA克隆分析及Md-miRLn11靶向调控Md-NBS基因表达影响斑点落叶病抗性研究[D]. 北京:中国农业大学, 2013. [38] 李丹蕾, 张瑞芝, 王峰, 等. MicroRNA转录后调控欧美杨R2R3-MYBs抗锈菌表达[J]. 林业科学研究, 2017, 30(2):254-259. [39] Zhao D, Gong S, Hao Z, et al.Identification of miRNAs Responsive to Botrytis cinerea in herbaceous peony(Paeonia lactiflora PalL.)by high-throughput sequencing[J]. Genes, 2015, 6:918-934. [40] 邵亚峰. 菊花蚜虫抗性相关基因表达谱分析及microRNA发掘[D]. 南京:南京农业大学, 2013. [41] Li BS, Qin Y, Duan H, et al.Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica[J]. J Exp Bot, 2011, 62(11):3765-3779. [42] Ren Y, Chen L, Zhang Y, et al.Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress[J]. Funct Integr Genom, 2012, 12(2):327-339. [43] 王丽丽, 赵韩生, 孙化雨, 等. 毛竹miR397和miR1432的克隆及其逆境胁迫响应表达分析[J]. 林业科学, 2015, 51(6):63-70. [44] 唐梦楠, 刘强, 张颖. 耐盐相关miRNA在红树伴生植物海马齿中对高盐生境的响应[J]. 分子植物育种, 2017, 15(3), 1137-1142. [45] Zhou J, Liu M, Jiang J, et al.Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress[J]. Molecular Biology Reports, 2012, 39(9), 8645-8654. [46] Kim JJ, Lee JH, Kim WH, et al.The micro RNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis[J]. Plant Physiol, 2012, 159:461-478. [47] An F, Liang Y, Li J, et al.Construction and significance analysis of the microRNA expression profile of Hemerocallis fulva at low temperature[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(3):378-383. [48] 刘海珍. 匍匐剪股颖高温响应microRNAs的鉴定及差异表达分析[D]. 北京:北京林业大学, 2016. [49] Giacomelli J, Weigel D, Chan R, et al.Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage[J]. New Phytol, 2012, 195(4):766-773. [50] Hao Z, Liu D, Gong S, et al.High throughput sequencing of herbaceous peony small RNAs to screen thermo-tolerance related microRNAs[J]. Genes Genom, 2017, 39:397-408. [51] Jin Q, Xue Z, Dong C, et al.Identification and characterization of microRNAs from tree peony(Paeonia ostii)and their response to copper stress[J]. PLoS One, 2015, 10(2):e0117584. [52] Zeng H, Wang G, Hu X, et al.Role of micro RNAs in plant responses to nutrient stress[J]. Plant and Soil, 2014, 374(1-2):1005-1021. [53] Ding Y, Zhu C.The role of microRNAs in copper and cadmium homeostasis[J]. Biochem Biophys Res Commun, 2009, 386(1):6-10. [54] Lu Y, Yang L, Qi Y, et al.Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing[J]. BMC Plant Biology, 2014, 14:123. [55] 于昌江, 孙瑞, 王忆, 等. 小金海棠缺铁胁迫相关miR394a的克隆与表达分析[J]. 中国农学通报, 2012, 28(28):158-162. [56] Peng T, Sun H, Du Y, et al.Characterization and expression patterns of microRNAs involved in rice grain filling[J]. PLoS One, 2013, 8(1):e54148. [57] Yi R, Zhu Z, Hu J, et al.Identification and expression analysis of microRNAs at the grain filling stage in rice(Oryza sativa L.)via deep sequencing[J]. PLoS One, 2013, 8(3):e57863. [58] Liu R, Lai B, Hu B, et al.Identification of microRNAs and their target genes related to the accumulation of anthocyanins in Litchi chinensis by high-throughput sequencing and degradome analysis[J]. Frontiers in Plant Science, 2017, 7:2059. [59] 柴娟. 香蕉microRNA及其靶基因的生物信息学预测与功能初步分析[D]. 海口:海南大学, 2013. [60] Zhao D, Wei M, Shi M, et al.Identification and comparative profiling of miRNAs in herbaceous peony(Paeonia lactiflora PalL.)with red/yellow bicoloured flowers[J]. Scientific Reports, 2017, 7:44926. |