[1] Ruud J, Embden JDAV, Gasstra W, et al.Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6):1565-1575. [2] Amitai G, Sorek R.CRISPR-Cas adaptation:insights into the mechanism of action[J]. Nat Rev Microbiol, 2016, 2:67-76. [3] 李铁民. RNA干扰介导原核细胞适应性免疫[J]. 中国细胞生物学学报, 2008, 30(3):287-290. [4] Makarova KS, Haft DH, Barrangou R, et al.Evolution and classification of the CRISPR-Cas systems[J]. Nature Review Microbiology, 2011, 9(6):467-477. [5] Shmakov S, Smargon A, Scott D, et al.Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2017, 15(3):169-182. [6] Nishimasu H, Ran FA, Hsu P, et al.Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5):935-949. [7] Jiang F, Doudna JA.The structural biology of CRISPR-Cas systems[J]. Curr Opin Struct Biol, 2015, 30:100-111. [8] Jiang F, Zhou K, Ma L, et al.A Cas9-guide RNA complex preorganized for target DNA recognition[J]. Science, 2015, 348(6242):1477-1481. [9] Komor AC, Badran AH, Liu DR.CRISPR-based technologies for the manipulation of eukaryotic genomes[J]. Cell, 2017, 3:559. [10] Jiang F, Taylor DW, Chen JS, et al.Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage[J]. Science, 2016, 351(6275):867-871. [11] Nishimasu H, Nureki O.Structures and mechanisms of CRISPR RNA-guided effector nucleases[J]. Current Opinion in Structural Biology, 2017, 43:68-78. [12] Swarts DC, Oost JVD, Jinek M.Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a[J]. Mol Cell, 2017, 66(2):221-233 e4. [13] Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):aaf5573. [14] East-Seletsky A, O’Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624):270-273. [15] Liu L, Li X, Wang J, et al.Two distant catalytic sites are responsible for C2c2 RNase activities[J]. Science Foundation in China, 2017, 168(2):121-134 e12. [16] Liu L, Li X, Ma J, et al.The molecular architecture for RNA-guided RNA cleavage by Cas13a[J]. Cell, 2017, 4:714-726 e10. [17] Wright AV, Nunez JK, Doudna JA.Biology and applications of CRISPR systems:Harnessing nature’s toolbox for genome engineering[J]. Cell, 2016, 164(1/2):29-44. [18] Ran YD, Liang Z, Gao CX.Current and future editing reagent delivery systems for plant genome editing[J]. Science China:Life Sciences, 2017, 60(5):490-505. [19] Cong L, Ran FA, et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 6121:819-823. [20] Hwang WY, Fu Y, Reyon D, et al.Efficient genome editing in zebrafish using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31(3):227-229. [21] Mali P, Yang L, et al.RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. [22] Wang H, Yang H, Shivalila CS, et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4):910-918. [23] Li JF, Norvill JE, Aach J, et al.Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nat Biotechnol, 2013, 31(8):688-691. [24] Nekrasov V, Staskawicz B, Weigel D.Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease[J]. Nat Biotechnol, 2013, 31(8):691-693. [25] Shan Q, Wang Y, Li J, et al.Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31(8):686-688. [26] Wang M, Mao Y, et al.Multiplex gene editing in rice using the CRISPR-Cpf1 System[J]. Mol Plant, 2017, 7:1011-1013. [27] Tang X, Lowder LG, Zhang T, et al.A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants[J]. Nat Plants, 2017, 3:17018. [28] Endo A, Masafumi M, Kaya H, et al.Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida[J]. Sci Rep, 2016, 6:38169. [29] Li H, Xie K.Recent progresses in CRISPR genome editing in plants[J]. Chinese Journal of Biotechnology, 2017, 33(10):1700-1711. [30] Komor AC, Kim YB, Packer MS, et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424. [31] Lu YM, Zhu JK.Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(3):523-525. [32] Zong Y, Wang YP, Li C, et al.Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nat Biotechnol, 2017, 35(5):438-440. [33] Kim YB, Komore AC, et al.Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J]. Nat Biotechnol, 2017, 35(4):371-376. [34] Shimatani Z, Kashojiya S, Takayama M, et al.Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J]. Nat Biotechnol, 2017, 35(5):441-443. [35] Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305):aaf8729. [36] Gaudelli NM, Komor AC, Rees HA, et al.Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. [37] Hua K, TAO X, Yuan F, et al.Precise A. T to G. C base editing in the rice genome[J]. Molecular Plant, 2018, 11(4):627-630. [38] Yan F, Kuang Y, Ren B, et al.High-efficient A. T to G. C base editing by Cas9n-guided tRNA adenosine deaminase in rice[J]. Molecular Plant, 2018, 11(4):631-634. [39] Wang A.Dissecting the molecular network of virus-plant interactions:the complex roles of host factors[J]. Annual Review of Phytopathology, 2015, 53(1):45-66. [40] Alam SB, Rochon DA.Cucumber necrosis virus recruits cellular heat shock protein 70 homologs at several stages of infection[J]. J Virol, 2016, 90(7):3302-3317. [41] Alam SB, Rochon DA.Evidence that Hsc70 is associated with cucumber necrosis virus particles and plays a role in particle disassembly[J]. J Virol, 2017, 91(2):01555-16. [42] Sanfacon H.Plant translation factors and virus resistance[J]. Viruses, 2015, 7(7):3392-3419. [43] Hashimoto M, Neriya Y, et al.EXA1, a GYF domain protein, is res-ponsible for loss-of-susceptibility to Plantago asiatica mosaic virus in Arabidopsis thaliana[J]. Plant J, 2016, 88(1):120-131. [44] Pogany J, Nagy D.Activation of tomato bushy stunt virus RNA-dependent RNA polymerase by cellular heat shock protein 70 is enhanced by phospholipids in vitro[J]. J Virol, 2015, 89(10):5714-5723. [45] Imura Y, Molho M, Chuang C, et al.Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants[J]. Virology, 2015, 484:265-275. [46] Xu K, Nagy D.RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes[J]. Proc Natl Acad Sci USA, 2015, 112(14):E1782-E1791. [47] Tian M, Sasvani Z, Gonzalez PA, et al.Salicylic acid inhibits the replication of tomato bushy stunt virus by directly targeting a host component in the replication complex[J]. Mol Plant Microbe Interact, 2015, 28(4):379-386. [48] Hanley-Bowdoin L, Bejarano ER, Robertson D, et al.Geminiviruses:masters at redirecting and reprogramming plant processes[J]. Nat Rev Microbiol, 2013, 11(11):777-788. [49] Rizvi I, Choudhury NR, Tuteja N.Insights into the functional characteristics of geminivirus rolling-circle replication initiator protein and its interaction with host factors affecting viral DNA replication[J]. Archives of Virology, 2015, 160(2):375-387. [50] Fridborg I, Grainger J, Page A, et al.TIP, a novel host factor linking callose degradation with the cell-to-cell movement of potato virus X[J]. Mol Plant Microbe Interact, 2003, 16(2):132-140. [51] Bubici G, Carluccio AV, Cillo F, et al.Virus-induced gene silencing of pectin methylesterase protects Nicotiana benthamiana from lethal symptoms caused by Tobacco mosaic virus[J]. European Journal of Plant Pathology, 2015, 141(2):339-347. [52] Ishikawa K, et al.Dual targeting of a virus movement protein to ER and plasma membrane subdomains is essential for plasmodesmata localization[J]. PLoS Pathogens, 2017, 13(6):e1006463. [53] Levy A, Zheng JY, Lazarowitzl SG.Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement[J]. Curr Biol, 2015, 15:2018-2025. [54] Pitzalis N, Heinlein M.The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement [J]. J Exp Bot, 2017, 69(1):117-132. [55] Ueki S, Spektor R, Natale DM, et al.ANK, a host cytoplasmic receptor for the tobacco mosaic virus cell-to-cell movement protein, facilitates intercellular transport through plasmodesmata[J]. PLoS Pathogens, 2010, 6(11):e1001201. [56] Guiu-Aragones C, Sánchez-Pina MA, et al.cmv1 is a gate for Cucumber mosaic virus transport from bundle sheath cells to phloem in melon[J]. Mol Plant Pathol, 2016, 17(6):973-984. [57] Pyott DE, Sheehan E, Molnar A.Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants[J]. Mol Plant Pathol, 2016, 17(8):1276-1288. [58] Chandrasekaran J, Brumin M, Wolf D, et al.Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology[J]. Mol Plant Pathol, 2016, 17(7):1140-1153. [59] Wittmann S, Chatel H, et al.Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor(iso)4E of Arabidopsis thaliana using the yeast two-hybrid system[J]. Virology, 1997, 1:84-92. [60] Lellis AD, Kasschau KD, et al.Loss-of-susceptibility mutants of Ar-abidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection[J]. Curr Biol, 2002, 12(12):1046-1051. [61] Hashimoto M, Neriya Y, Yamaji Y, et al.Recessive resistance to plant viruses:potential resistance genes beyond translation initiation factors[J]. Front Microbiol, 2016, 7:1695. [62] Deng Y, Liu M, Li X, et al.microRNA-mediated R gene regulation:molecular scabbards for double-edged swords[J]. Science China Life Science, 2018, 61(2):138-147. [63] Khalid A, Zhang Q, Yasir M, et al.Small RNA based genetic engineering for plant viral resistance:application in crop protection[J]. Front Microbiol, 2017, 8:43. |