生物技术通报 ›› 2018, Vol. 34 ›› Issue (7): 1-13.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0447
高秀华, 傅向东
收稿日期:
2018-05-14
出版日期:
2018-07-26
发布日期:
2018-08-01
作者简介:
高秀华,女,博士,副研究员,研究方向:激素调控植物生长发育的分子机制;E-mail:xhgao@genetics.ac.cn
基金资助:
GAO Xiu-hua, FU Xiang-dong
Received:
2018-05-14
Published:
2018-07-26
Online:
2018-08-01
摘要: 赤霉素(Gibberellins或gibberellic acid,GA)是植物生长发育所必需的植物激素之一,调控植物生长发育的多个过程。近年来随着植物分子生物学和功能基因组学的发展,有关GA信号转导途径及其调控植物生长发育的研究取得了一系列的进展。综述了GA信号转导途径的关键组分,包括GA受体GIBBERELLIN INSENSITIVE DWARF1(GID1)蛋白、F-box蛋白(拟南芥中的SLEEPY1[SLY1]和水稻中的GIBBERELLIN INSENSITIVE DWARF2[GID2])及DELLA蛋白,阐述了GA去除DELLA蛋白阻遏作用的分子模型,同时探讨DELLA蛋白通过其互作蛋白整合其它激素及环境信号调控植物生长发育的作用机理。
高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展[J]. 生物技术通报, 2018, 34(7): 1-13.
GAO Xiu-hua, FU Xiang-dong. Research Progress for the Gibberellin Signaling and Action on Plant Growth and Development[J]. Biotechnology Bulletin, 2018, 34(7): 1-13.
[1] Daviere JM, de Lucas M, Prat S. Transcriptional factor interaction:a central step in DELLA function[J]. Curr Opin Genet Dev, 2008, 18:295-303. [2] Sun TP.The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants[J]. Curr Biol, 2011, 21:R338-345. [3] Vera-Sirera F, Gomez MD, Perez-Amador MA.Chapter 20-DELLA proteins, a group of GRAS transcription regulators that mediate gibberellin signaling[J]. Plant Transcription Factors, 2016:313-328. [4] Hedden P, Thomas SG.Gibberellin biosynthesis and its regulation[J]. Biochem J, 2012, 444:11-25. [5] Silverstone A, Sun T.Gibberellins and the green revolution[J]. Trends Plant Sci, 2000, 5:1-2. [6] Magome H, Nomura T, Hanada A, et al.CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice[J]. Proc Natl Acad Sci USA, 2013, 110:1947-1952. [7] Nomura T, Magome H, Hanada A, et al.Functional analysis of Arabidopsis CYP714A1 and CYP714A2 reveals that they are distinct gibberellin modification enzymes[J]. Plant Cell Physiol, 2013, 54:1837-1851. [8] Cowling RJ, Kamiya Y, Seto H, et al.Gibberellin dose-response regulation of GA4 gene transcript levels in Arabidopsis[J]. Plant Physiol, 1998, 117:1195-1203. [9] Regnault T, Daviere JM, Achard P.Long-distance transport of endogenous gibberellins in Arabidopsis[J]. Plant Signal Behav, 2016, 11:e1110661. [10] Binenbaum J, Weinstain R, Shani E.Gibberellin localization and transport in plants[J]. Trends Plant Sci, 2018, 23:410-421. [11] Tal I, Zhang Y, Jorgensen ME, et al.The Arabidopsis NPF3 protein is a GA transporter[J]. Nat Commun, 2016, 7:11486. [12] Saito H, Oikawa T, Hamamoto S, et al.The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis[J]. Nat Commun, 2015, 6:6095. [13] Kanno Y, Oikawa T, Chiba Y, et al.AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J]. Nat Commun, 2016, 7:13245. [14] Peng J, Richards DE, Hartley NM, et al.‘Green revolution' genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400:256-261. [15] Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al.Green revolution:a mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416:701-702. [16] Spielmeyer W, Ellis MH, Chandler PM.Semidwarf(sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene[J]. Proc Natl Acad Sci USA, 2002, 99:9043-9048. [17] Sun T, Gubler F.Molecular mechanism of gibberellin signaling in plant[J]. Annual Review of Plant Biology, 2004, 55:197-223. [18] Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al.GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005, 437:693-698. [19] Xu H, Liu Q, Yao T, et al.Shedding light on integrative GA signaling[J]. Curr Opin Plant Biol, 2014, 21:89-95. [20] Gao XH, Zhang YY, He ZH, et al.Chapter 4:Gibberellins[M]//Li JY, Li CY, Smith SM. Hormone Metabolism & Signaling in Plants. Elsevier, 2017:107-160. [21] Griffiths J, Murase K, Rieu I, et al.Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. Plant Cell, 2006, 18:3399-3414. [22] Iuchi S, Suzuki H, Kim YC, et al.Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal[J]. Plant J, 2007, 50:958-966. [23] Nakajima M, Shimada A, Takashi Y, et al.Identification and characterization of Arabidopsis gibberellin receptors[J]. Plant J, 2006, 46:880-889. [24] Gallego-Giraldo C, Hu J, Urbez C, et al.Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis[J]. Plant J, 2014, 79:1020-1032. [25] Murase K, Hirano Y, Sun TP, et al.Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456:459-463. [26] Shimada A, Ueguchi-Tanaka M, Nakatsu T, et al.Structural basis for gibberellin recognition by its receptor GID1[J]. Nature, 2008, 456:520-523. [27] Ueguchi-Tanaka M, Matsuoka M.The perception of gibberellins:clues from receptor structure[J]. Curr Opin Plant Biol, 2010:503-508. [28] Nemoto K, Ramadan A, Arimura GI, et al.Tyrosine phosphorylation of the GARU E3 ubiquitin ligase promotes gibberellin signalling by preventing GID1 degradation[J]. Nat Commun, 2017, 8:1004. [29] Boss PK, Thomas MR.Association of dwarfism and floral induction with a grape ‘green revolution' mutation[J]. Nature, 2002, 416:847-850. [30] Olszewski N, Sun TP, Gubler F.Gibberellin signaling biosynthesis catabolism and response pathways[J]. The Plant Cell, 2002, 14:S61-S80. [31] Dill A, Jung HS, Sun TP.The DELLA motif is essential for gibberellin-induced degradation of RGA[J]. Proc Natl Acad Sci USA, 2001, 98:14162-14167. [32] Lee S, Cheng H, King KE, et al.Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition[J]. Genes Dev, 2002, 16:646-658. [33] Wen CK, Chang C.Arabidopsis RGL1 encodes a negative regulator of gibberellin responses[J]. Plant Cell, 2002, 14:87-100. [34] Peng J, Carol P, Richards DE, et al.The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. Genes Dev, 1997, 11:3194-3205. [35] Silverstone AL, Ciampaglio CN, Sun T.The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway[J]. Plant Cell, 1998, 10:155-169. [36] Pysh LD, Wysocka-Diller JW, Camilleri C, et al.The GRAS gene family in Arabidopsis:sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. Plant J, 1999, 18:111-119. [37] Asano K, Hirano K, Ueguchi-Tanaka M, et al.Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice[J]. Mol Genet Genomics, 2009, 281:223-231. [38] Hirano K, Asano K, Tsuji H, et al.Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice[J]. Plant Cell, 2010, 22:2680-2696. [39] Koornneef M, Elgersma A, Hanhart CJ, et al.A gibberellin insensitive mutant of Arabidopsis thaliana[J]. Physiol Plant, 1985, 65. [40] McGinnis KM, Thomas SG, Soule JD, et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase[J]. Plant Cell, 2003, 15:1120-1130. [41] Wang F, Deng XW.Plant ubiquitin-proteasome pathway and its role in gibberellin signaling[J]. Cell Res, 2011, 21:1286-1294. [42] Dill A, Thomas SG, Hu J, et al.The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation[J]. Plant Cell, 2004, 16:1392-1405. [43] Fu X, Richards DE, Fleck B, et al.The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates[J]. Plant Cell, 2004, 16:1406-1418. [44] Kim SI, Park BS, Kim do Y, et al. E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development[J]. Biochem J, 2015, 469:299-314. [45] Ariizumi T, Lawrence PK, Steber CM.The role of two f-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. Plant Physiol[J]. 2011, 155:765-775. [46] Ariizumi T, Steber CM.Mutations in the F-box gene SNEEZY result in decreased Arabidopsis GA signaling[J]. Plant Signal Behav, 2011, 6:831-833. [47] Strader LC, Ritchie S, Soule JD, et al.Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY[J]. Proc Natl Acad Sci USA, 2004, 101:12771-12776. [48] Daviere JM, Achard P.A pivotal role of DELLAs in regulating multiple hormone signals[J]. Mol Plant, 2015, 9:10-20. [49] Ariizumi T, Murase K, Sun TP, et al.Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1[J]. Plant Cell, 2008, 20:2447-2459. [50] Ariizumi T, Hauvermale AL, Nelson SK, et al.Lifting della repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling[J]. Plant Physiol, 2013, 162:2125-2139. [51] Ueguchi-tanaka M, Hirano K, Hasegawa Y, et al. Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant[J]. Plant Cell, 2008, 20:2437-2446. [52] Dai C, Xue HW.Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling[J]. EMBO J, 2010, 29:1916-1927. [53] Qin Q, Wang W, Guo X, et al.Arabidopsis DELLA protein degradation is controlled by a type-one protein phosphatase, TOPP4[J]. PLoS Genet, 2014, 10:e1004464. [54] Filardo F, Robertson M, Singh DP, et al.Functional analysis of HvSPY, a negative regulator of GA response, in barley aleurone cells and Arabidopsis[J]. Planta, 2009, 229:523-537. [55] Shimada A, Ueguchi-Tanaka M, Sakamoto T, et al.The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis[J]. Plant J, 2006, 48:390-402. [56] Swain SM, Tseng TS, Olszewski NE.Altered expression of SPINDLY affects gibberellin response and plant development[J]. Plant Physiol, 2001, 126:1174-1185. [57] Swain SM, Tseng TS, Thornton TM, et al.SPINDLY is a nuclear-localized repressor of gibberellin signal transduction expressed throughout the plant[J]. Plant Physiol, 2002, 129:605-615. [58] Zentella R, Hu J, Hsieh WP, et al.O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis[J]. Genes Dev, 2016, 30:164-176. [59] Zentella R, Sui N, Barnhill B, et al.The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA[J]. Nat Chem Biol, 2017, 13:479-485. [60] Conti L, Nelis S, Zhang C, et al.Small Ubiquitin-like Modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin[J]. Dev Cell, 2014, 28:102-110. [61] Yoshida H, Ueguchi-Tanaka M.DELLA and SCL3 balance gibberellin feedback regulation by utilizing INDETERMINATE DOMAIN proteins as transcriptional scaffolds[J]. Plant Signal Behav, 2014, 9:e29726. [62] Van De Velde K, Ruelens P, Geuten K, et al. Exploiting DELLA signaling in cereals[J]. Trends Plant Sci, 2017, 22:880-893. [63] de Lucas M, Daviere JM, Rodriguez-Falcon M, et al. A molecular framework for light and gibberellin control of cell elongation[J]. Nature, 2008, 451:480-484. [64] Feng S, Martinez C, Gusmaroli G, et al.Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature, 2008, 451:475-479. [65] Bai MY, Shang JX, Oh E, et al.Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis[J]. Nat Cell Biol, 2012, 14:810-817. [66] Gallego-Bartolome J, Minguet EG, Grau-Enguix F, et al.Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis[J]. Proc Natl Acad Sci USA, 2012, 109:13446-13451. [67] Li QF, Wang C, Jiang L, et al. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis[J]. Sci Signal, 2012, 5:ra72. [68] Bernardo-Garcia S, de Lucas M, Martinez C, et al. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth[J]. Genes Dev, 2014, 28:1681-1694. [69] Oh E, Zhu JY, Bai MY, et al.Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl[J]. Elife, 2014, 3. [70] An F, Zhang X, Zhu Z, et al.Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings[J]. Cell Res, 2012, 22:915-927. [71] Marín-de la Rosa N, Sotillo B, Miskolczi P, et al. Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners[J]. Plant Physiol, 2014, 166:1022-1032. [72] Braun N, de Saint Germain A, Pillot JP, et al. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching[J]. Plant Physiol, 2012, 158:225-238. [73] Drummond RS, Janssen BJ, Luo Z, et al.Environmental control of branching in petunia[J]. Plant Physiol, 2015, 168:735-751. [74] Guan JC, Koch KE, Suzuki M, et al.Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork[J]. Plant Physiol, 2012, 160:1303-1317. [75] Rameau C, Bertheloot J, Leduc N, et al.Multiple pathways regulate shoot branching[J]. Front Plant Sci, 2015, 5:741. [76] Daviere JM, Wild M, Regnault T, et al.Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height[J]. Curr Biol, 2014, 24:1923-1928. [77] Resentini F, Felipo-Benavent A, Colombo L, et al.TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana[J]. Mol Plant, 2015, 8:482-485. [78] Nakamura H, Xue YL, Miyakawa T, et al.Molecular mechanism of strigolactone perception by DWARF14[J]. Nat Commun, 2013, 4:2613. [79] Hou X, Lee LY, Xia K, et al.DELLAs modulate jasmonate signaling via competitive binding to JAZs[J]. Dev Cell, 2010, 19:884-894. [80] Wild M, Daviere JM, Cheminant S, et al.The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses[J]Plant Cell, 2012, 24:3307-3319. [81] Yang DL, Yao J, Mei CS, et al.Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade[J]. PNAS, 2012:E1192-E1200. [82] Grebe M.The patterning of epidermal hairs in Arabidopsis--updated[J]. Curr Opin Plant Biol, 2012, 15:31-37. [83] Qi T, Song S, Ren Q, et al.The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. Plant Cell, 2011, 23:1795-1814. [84] Qi T, Huang H, Wu D, et al.Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J]. Plant Cell, 2014, 26:1118-1133. [85] Yu S, Galvao VC, Zhang YC, et al.Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors[J]. Plant Cell, 2012, 24:3320-3332. [86] Achard P, Herr A, Baulcombe DC, et al.Modulation of floral development by a gibberellin-regulatedmicroRNA[J]. Development, 2004, 131:3357-3365. [87] Achard P, Liao L, Jiang C, et al.DELLAs contribute to plant photomorphogenesis[J]. Plant Physiol, 2007, 143:1163-1172. [88] Moon J, Suh SS, Lee H, et al.The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. Plant J, 2003, 35:613-623. [89] Mutasa-Göttgens E, Hedden P.Gibberellin as a factor in floral regulatory networks[J]. J Exp Bot, 2009, 60:1979-1989. [90] Xu F, Li T, Xu PB, et al.DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis[J]. FEBS Lett, 2016, 590:541-549. [91] Li Y, Wang H, Li X, et al.Two DELLA-interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana[J]. J Exp Bot, 2017, 68:2757-2767. [92] Li W, Wang H, Yu D.Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions[J]. Mol Plant, 2016, 9:1492-1503. [93] Zhang L, Chen L, Yu D.Transcription Factor WRKY75 Interacts with DELLA proteins to affect flowering[J]. Plant Physiol, 2018, 176:790-803. [94] Park J, Nguyen KT, Park E, et al.DELLA proteins and their interacting RING Finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis[J]. Plant Cell, 2013, 25:927-943. [95] Arnaud N, Girin T, Sorefan K, et al.Gibberellins control fruit patterning in Arabidopsis thaliana[J]. Genes Dev, 2010, 24:2127-2132. [96] Gallego-Bartolomé J, Minguet EG, Marin JA, et al.Transcriptional diversification and functional conservation between DELLA proteins in Arabidopsis[J]. Mol Biol Evol, 2010, 27:1247-1256. [97] Josse EM, Gan Y, Bou-Torrent J, et al.A DELLA in Disguise:SPATULA restrains the growth of the developing Arabidopsis seedling[J]. Plant Cell, 2011, 23:1337-1351. [98] Koornneef M, Bentsink L, Hilhorst H.Seed dormancy and germination[J]. Curr Opin Plant Biol, 2002, 5:33-36. [99] Piskurewicz U, Jikumaru Y, Kinoshita N, et al.The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity[J]. Plant Cell, 2008, 20:2729-2745. [100] Lim S, Park J, Lee N, et al.ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis[J]. Plant Cell, 2013, 25:4863-4878. [101] Heo JO, Chang KS, Kim IA, et al.Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root[J]. Proc Natl Acad Sci USA, 2011, 108:2166-2171. [102] Zhang ZL, Ogawa M, Fleet CM, et al.Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108:2160-2165. [103] Colasanti J, Tremblay R, Wong AY, et al.The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants[J]. BMC Genomics, 2006, 7:158. [104] Feurtado JA, Huang D, Wicki-Stordeur L, et al.The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation[J]. Plant Cell, 2011, 23:1772-1794. [105] Fukazawa J, Teramura H, Murakoshi S, et al.DELLAs Function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis[J]. The Plant Cell, 2014, 26:2920-2938. [106] Yoshida H, Hirano K, Sato T, et al.DELLA protein functions as a transcriptional activator through the DNA binding of the indeterminate domain family proteins[J]. Proc Natl Acad Sci USA, 2014, 111:7861-7866. [107] Fukazawa J, Mori M, Watanabe S, et al.DELLA-GAF1 complex is a main component in gibberellin feedback regulation of GA20 oxidase 2[J]. Plant Physiol, 2017, 175:1395-1406. [108] Weiss D, Ori N.Mechanisms of cross talk between gibberellin and other hormones[J]. Plant Physiol, 2007, 144:1240-1246. [109] Marín-de la Rosa N, Pfeiffer A, Hill K, et al. Genome wide binding site analysis reveals transcriptional coactivation of Cytokinin-responsive genes by DELLA proteins[J]. PLoS Genet, 2015, 11:e1005337. [110] Moubayidin L, Perilli S, Dello Ioio R, et al.The rate of cell differentiation controls the Arabidopsis root meristem growth phase[J]. Curr Biol, 2010, 20:1138-1143. [111] Rodriguez-Milla MA, Salinas J.Prefoldins 3 and 5 play an essential role in Arabidopsis tolerance to salt stress[J]. Mol Plant, 2009, 2:526-534. [112] Locascio A, Blazquez MA, Alabadi D.Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction[J]. Curr Biol, 2013, 23:804-809. [113] Chen X, Wu S, Liu Z, et al.Environmental and endogenous control of cortical microtubule orientation[J]. Trends Cell Biol, 2016, 26:409-419. [114] Salanenka Y, Verstraeten I, Lofke C, et al.Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane[J]. Proc Natl Acad Sci USA, 2018, 115:3716-3721. [115] Ito T, Okada K, Fukazawa J, et al.DELLA-dependent and -independent gibberellin signaling[J]. Plant Signal Behav, 2018:e1445933. [116] Maymon I, Greenboim-Wainberg Y, Sagiv S, et al.Cytosolic activity of SPINDLY implies the existence of a DELLA-independent gibberellin-response pathway[J]. Plant J, 2009, 58:979-988. [117] Fuentes S, Ljung K, Sorefan K, et al.Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses[J]. Plant Cell, 2012, 24:3982-3996. [118] Okada K, Ito T, Fukazawa J, et al.Gibberellin induces an increase in cytosolic Ca2+ via a DELLA-independent signaling pathway[J]. Plant Physiol, 2017, 175:1536-1542. |
[1] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[2] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[3] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[4] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[5] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[6] | 崔俊美, 魏家萍, 董小云, 王莹, 郑国强, 刘自刚. PIP/PIPL:一类调控植物逆境响应和发育的植物内源性多肽[J]. 生物技术通报, 2023, 39(3): 35-42. |
[7] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[8] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[9] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[10] | 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94. |
[11] | 汤茜茜, 林楚宇, 陶增. 植物组蛋白去甲基化酶研究进展[J]. 生物技术通报, 2022, 38(7): 13-22. |
[12] | 李萍, 郭发平, 田敏, 税阳, 徐娜娜, 白大嵩, 余德金, 张杰, 胡运高, 彭友林. 甾醇在调节植物生长发育中的研究进展[J]. 生物技术通报, 2022, 38(7): 90-98. |
[13] | 古盼, 齐学影, 李莉, 张曦, 单晓昳. AtRGS1胞吞动态调控G蛋白参与拟南芥生长发育和抗性反应[J]. 生物技术通报, 2022, 38(6): 34-42. |
[14] | 雷春霞, 李灿辉, 陈永坤, 龚明. 马铃薯块茎形成的生理生化基础和分子机制[J]. 生物技术通报, 2022, 38(4): 44-57. |
[15] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||