生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 18-27.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0622

• 综述与专论 • 上一篇    下一篇

植物调控盐胁迫下细胞壁完整性的分子机制

汪明滔1,2(), 刘建伟1, 赵春钊1()   

  1. 1.中国科学院分子植物科学卓越创新中心,上海 201602
    2.中国科学院大学,北京 100049
  • 收稿日期:2023-06-29 出版日期:2023-11-26 发布日期:2023-12-20
  • 通讯作者: 赵春钊,男,博士,研究员,研究方向:植物与非生物胁迫互作;E-mail: czzhao@cemps.ac.cn
  • 作者简介:汪明滔,男,硕士,研究方向:植物与非生物胁迫互作;E-mail: mtwang@psc.ac.cn
  • 基金资助:
    上海市自然科学基金面上项目(22ZR1469600);国家自然科学基金项目(32270283);国家自然科学基金项目(32070295)

Molecular Mechanisms of Cell Wall Integrity in Plants Under Salt Stress

WANG Ming-tao1,2(), LIU Jian-wei1, ZHAO Chun-zhao1()   

  1. 1. CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602
    2. University of the Chinese Academy of Sciences, Beijing 100049
  • Received:2023-06-29 Published:2023-11-26 Online:2023-12-20

摘要:

植物细胞壁不仅起着支撑和保护细胞的作用,还被认为是植物抵抗逆境胁迫环境的第一道屏障。作为限制农业生产的一个主要非生物胁迫因子,盐胁迫能造成植物细胞壁的组分和结构发生改变,而植物可以通过细胞壁完整性感受器如CrRLK1Ls、LRXs和WAKs等蛋白来感知这些变化并启动下游盐胁迫响应。在细胞内,植物通过盐胁迫诱导的Ca2+内流、植物激素等信号促进细胞壁多聚糖合成和修饰相关基因的表达,从而有助于维持细胞壁的完整性,增强植物盐胁迫适应性。本文概述了植物初生细胞壁多聚糖的主要组分和各组分之间的相互结合关系,并且阐述了盐胁迫对细胞壁各组分的影响,以及盐胁迫下植物感知和维持细胞壁完整性的分子机制,最后讨论了盐胁迫下细胞壁完整性感知和调控研究领域还需要解决的科学问题。

关键词: 细胞壁完整性, 盐胁迫, 细胞壁感受器, CrRLK1Ls, LRXs

Abstract:

Cell wall not only supports and protects plant cells, but also serves as the first barrier for plants to resist environmental stresses. As one of the major abiotic stresses that restrict agricultural production, salt stress can cause the alteration of cell wall composition and structure, and these changes can be perceived by cell wall integrity sensors, such as CrRLK1Ls, LRXs, and WAKs, to activate intracellular salt stress responses. In the cell interior, salt stress-induced influx of Ca2+ and activation of phytohormone signaling promote the expressions of genes that are associated with cell wall biosynthesis and modification, which in turn facilitate the maintenance of cell wall integrity and improve the adaptation of plants to high salinity. In this review, the main components of primary cell wall polysaccharides and their cross-linking with each other are summarized. The impact of salt stress on cell wall polysaccharides, and the molecular mechanisms by which plants perceive and maintain cell wall integrity under salt stress, are also elucidated. Finally, the scientific questions that need to be further addressed in the research field of cell wall integrity under salt stress are discussed.

Key words: cell wall integrity, salt stress, cell wall sensor, CrRLK1Ls, LRXs