生物技术通报 ›› 2022, Vol. 38 ›› Issue (10): 115-123.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0066
张彤彤1,2(), 郑登俞2, 吴忠义2, 张中保2(), 于荣1()
收稿日期:
2022-01-14
出版日期:
2022-10-26
发布日期:
2022-11-11
作者简介:
张彤彤,女,硕士研究生,研究方向:玉米分子生物学;E-mail:基金资助:
ZHANG Tong-tong1,2(), ZHENG Deng-yu2, WU Zhong-yi2, ZHANG Zhong-bao2(), YU Rong1()
Received:
2022-01-14
Published:
2022-10-26
Online:
2022-11-11
摘要:
玉米NF-Y家族是一类重要的转录因子,在调控植物发育和逆境胁迫响应中起重要作用,探究该家族基因功能将为玉米抗逆育种提供重要的基因资源。本研究克隆获得ZmNF-YB13基因,使用生物信息学、实时荧光定量PCR等技术对该基因的基本特性、组织表达特性及响应逆境胁迫表达模式等进行分析。结果显示,该基因全长537 bp,编码蛋白含有178个氨基酸,分子量为18.9 kD,理论等电点为6.83,具有NF-Y家族特有的保守结构域。qPCR分析表明,ZmNF-YB13基因在玉米花丝中的表达量最高;同时ZmNF-YB13基因在不同逆境胁迫以及激素处理条件下均有不同程度的上调表达。在分别含有甘露醇、NaCl、ABA和JA的1/2 MS培养基上,转ZmNF-YB13基因拟南芥的根长于野生型,差异显著。在干旱和高盐处理下,土壤中生长的转基因拟南芥比野生型绿叶数多,MDA含量低,差异显著;同时干旱处理下,转基因植株的POD活性显著高于野生型。由此推测,ZmNF-YB13基因可能参与玉米耐旱、抗盐非生物胁迫的应答。
张彤彤, 郑登俞, 吴忠义, 张中保, 于荣. 玉米NF-Y转录因子基因ZmNF-YB13响应干旱和盐胁迫的功能分析[J]. 生物技术通报, 2022, 38(10): 115-123.
ZHANG Tong-tong, ZHENG Deng-yu, WU Zhong-yi, ZHANG Zhong-bao, YU Rong. Functional Analysis of ZmNF-YB13 Responding to Drought and Salt Stress[J]. Biotechnology Bulletin, 2022, 38(10): 115-123.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
pZmNF-YB13-FP | ATGGCGGAAGCTCCGGCGAGCC |
pZmNF-YB13-RP | TTAGTTTGAGATATCCCCGTTA |
pZmNF-YB13RT-FP | AATGGCGACGATCTGCTGTGG |
pZmNF-YB13RT-RP | GCTATCACCCTGCACCTCTCTG |
pGAPDH-FP | CCCTTCATCACCACGGACTAC |
pGAPDH-RP | AACCTTCTTGGCACCACCCT |
pZmNF-YB13T-FP | GAGAAGCGGAAGACCATCA |
pZmNF-YB13T-RP | GTATAATTGCGGGACTCTAATC |
表1 本实验所用的引物
Table 1 Primers used in this study
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
pZmNF-YB13-FP | ATGGCGGAAGCTCCGGCGAGCC |
pZmNF-YB13-RP | TTAGTTTGAGATATCCCCGTTA |
pZmNF-YB13RT-FP | AATGGCGACGATCTGCTGTGG |
pZmNF-YB13RT-RP | GCTATCACCCTGCACCTCTCTG |
pGAPDH-FP | CCCTTCATCACCACGGACTAC |
pGAPDH-RP | AACCTTCTTGGCACCACCCT |
pZmNF-YB13T-FP | GAGAAGCGGAAGACCATCA |
pZmNF-YB13T-RP | GTATAATTGCGGGACTCTAATC |
图2 ZmNF-YB13基因在玉米不同组织中的差异表达分析 图中误差线表示标准偏差。不同字母表示在0.05水平上有显著差异。下同
Fig.2 Tissue-specific expression pattern of gene ZmNF-YB13 in maize The error line in the figure refers to the standard deviation. Different letters indicate significant differences at the 0.05 level. The same below
图3 逆境和激素胁迫下ZmNF-YB13基因的表达模式分析 A:脱水处理;B:冷(4℃)处理;C:高盐(200 mmol/L NaCl)处理;D:PEG处理。数据为3个生物学重复±标准差
Fig.3 Expressions of ZmNF-YB13 in response to abiotic and hormone stress in maize A:Dehydration treatment;B:cold(4℃)treatment;C:high salt(200 mmol/L NaCl)treatment;D:PEG treatment. The error bar represents± SD of triplicate experiments
图4 T3代转基因拟南芥的鉴定 A:T3代转基因拟南芥的PCR鉴定;B:T3代转基因拟南芥的qPCR检测
Fig.4 Identification of T3 transgenic A. thaliana A:Identification of T3 generation A. thaliana by PCR. B:Identification of T3 generation A. thaliana by qPCR
图5 不同胁迫处理下转ZmNF-YB13基因拟南芥的表型分析 A:逆境处理下拟南芥的表型观察;B:逆境处理下拟南芥根长统计。*表示 0.05 水平上显著差异,**表示 0.01 水平上极显著差异,下同
Fig.5 Phenotypic analysis of ZmNF-YB13 transgenicA. thaliana under different stress treatments A:Phenotypic observation of A. thaliana under stress. B:Root length statistics of A. thaliana under stress treatment. *indicates significant difference at the 0.05 level. ** indicates very significant difference at the 0.01 level, the same below
图6 土壤中高盐和干旱处理下拟南芥表型分析 A:转ZmNF-YB13基因拟南芥在高盐、干旱以及覆水后的表型拍照分析;B,C:高盐和干旱处理下转基因和野生型拟南芥绿叶数量的统计分析;D:MDA含量的测定;E:POD活性的测定
Fig.6 Phenotypic analysis of A. thaliana under high salt and drought treatment in soil A:Analysis of phenotype of ZmNF-YB13 transgenic A. thaliana after high salt,drought and rewatering. B and C:Statistical analysis of green leaf number of transgenic and wild-type A. thaliana under high salt and drought treatment. D:Measurement of MDA content. E:Measurement of POD activity
[1] | 陈彦锋. 玉米高产栽培技术论述[J]. 世界热带农业信息, 2021(11):20-21. |
Chen YF. Discussion on high yield cultivation technology of maize[J]. World Trop Agric Inf, 2021(11):20-21. | |
[2] | 田敬园, 刘荣, 杨谦, 等. 玉米种植保护性耕作技术及其应用研究[J]. 世界热带农业信息, 2021(11):7-8. |
Tian JY, Liu R, Yang Q, et al. Study on conservation tillage technology of maize planting and its application[J]. World Trop Agric Inf, 2021(11):7-8. | |
[3] | 徐昆, 朱秀芳, 刘莹, 等. 气候变化下干旱对中国玉米产量的影响[J]. 农业工程学报, 2020, 36(11):149-158. |
Xu K, Zhu XF, Liu Y, et al. Effects of drought on maize yield under climate change in China[J]. Trans Chin Soc Agric Eng, 2020, 36(11):149-158. | |
[4] | 王全忠, 薛超, 周宏. 气候变化对中国玉米生产的影响及应对研究[J]. 科技与经济, 2016, 29(5):45-49. |
Wang QZ, Xue C, Zhou H. An empirical study of effect & coping strategies about climate change on Chinese maize production[J]. Sci Technol Econ, 2016, 29(5):45-49. | |
[5] | 闫振华, 刘东尧, 贾绪存, 等. 花期高温干旱对玉米雄穗发育、生理特性和产量影响[J]. 中国农业科学, 2021, 54(17):3592-3608. |
Yan ZH, Liu DY, Jia XC, et al. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage[J]. Sci Agric Sin, 2021, 54(17):3592-3608. | |
[6] | 姚超, 杨敏婕, 许梅花. 盐胁迫下玉米种子萌发及影响[J]. 农家参谋, 2021(8):61-62. |
Yao C, Yang MJ, Xu MH. Effects of salt stress on seed germination of maize[J]. The Farmers Consultant, 2021(8):61-62. | |
[7] | 刘畅, 孙璐. 盐碱胁迫对玉米苗期生理指标影响的研究进展[J]. 种子科技, 2020, 38(11):18-19. |
Liu C, Sun L. Research progress on effects of salt-alkali stress on physiological indexes of maize seedling stage[J]. Seed Sci Technol, 2020, 38(11):18-19. | |
[8] | 袁海, 何鹏飞, 武君洁, 等. 盐胁迫对耐盐和盐敏感玉米幼苗生长和生理特性的影响[J]. 江苏农业科学, 2019, 47(19):86-89. |
Yuan H, He PF, Wu JJ, et al. Effects of salt stress on growth and biological traits of salt-tolerant and salt-sensitive maize seedlings[J]. Jiangsu Agric Sci, 2019, 47(19):86-89. | |
[9] | 李世贵, 马瑞, 王芳芳, 等. 植物NF-Y转录因子研究进展[J]. 植物生理学报, 2021, 57(2):248-256. |
Li SG, Ma R, Wang FF, et al. Research progresses on plant NF-Y transcription factors[J]. Plant Physiol J, 2021, 57(2):248-256. | |
[10] | 丁慧霞, 刘凤, 等. 植物中NF-Y转录因子的结构和功能研究进展[J]. 分子植物育种, 2017, 15(5):1691-1701. |
Ding HX, Liu F, et al. The structure and function of NF-Y in plants[J]. Mol Plant Breed, 2017, 15(5):1691-1701. | |
[11] |
Li WX, Oono Y, Zhu JH, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8):2238-2251.
doi: 10.1105/tpc.108.059444 URL |
[12] |
Leyva-González MA, Ibarra-Laclette E, Cruz-Ramírez A, et al. Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members[J]. PLoS One, 2012, 7(10):e48138.
doi: 10.1371/journal.pone.0048138 URL |
[13] |
Das S, Parida SK, Agarwal P, et al. Transcription factor OsNF-YB9 regulates reproductive growth and development in rice[J]. Planta, 2019, 250(6):1849-1865.
doi: 10.1007/s00425-019-03268-2 pmid: 31482329 |
[14] |
Xiong YF, Ren Y, Li W, et al. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice[J]. J Exp Bot, 2019, 70(15):3765-3780.
doi: 10.1093/jxb/erz168 pmid: 31211389 |
[15] |
Alam MM, Tanaka T, Nakamura H, et al. Overexpression of a rice heme activator protein gene(OsHAP2E)confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number[J]. Plant Biotechnol J, 2015, 13(1):85-96.
doi: 10.1111/pbi.12239 URL |
[16] |
Ma XY, Zhu XL, Li CL, et al. Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana[J]. Plant Physiol Biochem, 2015, 86:34-43.
doi: 10.1016/j.plaphy.2014.11.011 URL |
[17] |
Xu L, Lin ZY, Tao Q, et al. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L[J]. PLoS One, 2014, 9(10):e111354.
doi: 10.1371/journal.pone.0111354 URL |
[18] |
Maheshwari P, Kummari D, Palakolanu SR, et al. Genome-wide identification and expression profile analysis of nuclear factor Y family genes in Sorghum bicolor L. (Moench)[J]. PLoS One, 2019, 14(9):e0222203.
doi: 10.1371/journal.pone.0222203 URL |
[19] |
Wang PJ, Zheng YC, Guo YC, et al. Identification, expression, and putative target gene analysis of nuclear factor-Y(NF-Y)transcription factors in tea plant(Camellia sinensis)[J]. Planta, 2019, 250(5):1671-1686.
doi: 10.1007/s00425-019-03256-6 URL |
[20] |
Feng C, Wang Y, Sun Y et al. Expression of the Malus sieversii NF-YB21 encoded gene confers tolerance to osmotic stresses in Arabidopsis thaliana[J]. Int J Mol Sci, 2021, 22(18):9777.
doi: 10.3390/ijms22189777 URL |
[21] |
Sun XD, Lian HF, Liu XC, et al. The garlic NF-YC gene, AsNF-YC8, positively regulates non-ionic hyperosmotic stress tolerance in tobacco[J]. Protoplasma, 2017, 254(3):1353-1366.
doi: 10.1007/s00709-016-1026-3 URL |
[22] |
Su HH, Cao YY, Ku LX, et al. Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize[J]. J Exp Bot, 2018, 69(21):5177-5189.
doi: 10.1093/jxb/ery299 pmid: 30137393 |
[23] |
Mei XP, Liu CX, Yu TT, et al. Identification and characterization of paternal-preferentially expressed gene NF-YC8 in maize endosperm[J]. Mol Genet Genomics, 2015, 290(5):1819-1831.
doi: 10.1007/s00438-015-1043-5 URL |
[24] |
Zhang ZB, Li XL, et al. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families[J]. Biochem Biophys Res Commun, 2016, 478(2):752-758.
doi: 10.1016/j.bbrc.2016.08.020 URL |
[25] |
殷龙飞, 王朝阳, 吴忠义, 等. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7):1029-1037.
doi: 10.3724/SP.J.1006.2019.83070 |
Yin LF, Wang ZY, Wu ZY, et al. Cloning and functional analysis of ZmGRAS31 gene in maize[J]. Acta Agron Sin, 2019, 45(7):1029-1037. | |
[26] |
Seo PJ, Park MJ, Park CM. Alternative splicing of transcription factors in plant responses to low temperature stress:mechanisms and functions[J]. Planta, 2013, 237(6):1415-1424.
doi: 10.1007/s00425-013-1882-4 URL |
[27] | Zhao H, Wu D, et al. The Arabidopsis thaliana nuclear factor Y transcription factors[J]. Front Plant Sci, 2017, 7:2045. |
[28] |
Sato H, Suzuki T, et al. NF-YB2 and NF-YB3 have functionally diverged and differentially induce drought and heat stress-specific genes[J]. Plant Physiol, 2019, 180(3):1677-1690.
doi: 10.1104/pp.19.00391 pmid: 31123093 |
[29] |
Wang BM, et al. ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants[J]. Front Plant Sci, 2018, 9:709.
doi: 10.3389/fpls.2018.00709 pmid: 29896208 |
[30] |
Zhang T, Zhang D, Liu YJ, et al. Overexpression of a NF-YB3 transcription factor from Picea wilsonii confers tolerance to salinity and drought stress in transformed Arabidopsis thaliana[J]. Plant Physiol Biochem, 2015, 94:153-164.
doi: 10.1016/j.plaphy.2015.05.001 URL |
[31] |
Han X, et al. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis[J]. J Exp Bot, 2013, 64(14):4589-4601.
doi: 10.1093/jxb/ert262 URL |
[32] | Wang T, Wei Q, Wang Z, et al. CmNF-YB8 affects drought resistance in Chrysanthemum by altering stomatal status and leaf cuticle thickness[J]. J Integr Plant Biol, 2021:2021 Dec 10. |
[33] |
Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde(MDA)and relatives in biological samples:analytical and biological challenges[J]. Anal Biochem, 2017, 524:13-30.
doi: 10.1016/j.ab.2016.10.021 URL |
[34] |
Nelson DE, Repetti PP, Adams TR, et al. Plant nuclear factor Y(NF-Y)B subunits confer drought tolerance and lead to improved corn yields on water-limited acres[J]. Proc Natl Acad Sci USA, 2007, 104(42):16450-16455.
doi: 10.1073/pnas.0707193104 URL |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[4] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[5] | 王宝宝, 王海洋. 理想株型塑造之于玉米耐密改良[J]. 生物技术通报, 2023, 39(8): 11-30. |
[6] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[7] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[8] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[9] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[10] | 冷燕, 马晓薇, 陈光, 任鹤, 李翔. 玉米高产竞赛助力中国玉米种业振兴[J]. 生物技术通报, 2023, 39(8): 4-10. |
[11] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[12] | 刘月娥, 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然. 我国玉米超高产研究现状与展望[J]. 生物技术通报, 2023, 39(8): 52-61. |
[13] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
[14] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[15] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||