生物技术通报 ›› 2020, Vol. 36 ›› Issue (7): 158-169.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1104
潘峰1,2, 侯凯2, 刘云1, 吴卫2
收稿日期:
2019-11-14
出版日期:
2020-07-26
发布日期:
2020-07-28
作者简介:
潘峰,男,博士,研究方向:药用生物资源开发与利用;E-mail:panfengpf123@126.com
基金资助:
PAN Feng1,2, HOU Kai2, LIU Yun1, WU Wei2
Received:
2019-11-14
Published:
2020-07-26
Online:
2020-07-28
摘要: 植物内生真菌作为一类重要的微生物资源,不仅可在植物组织内生活且不引起植物病变,还能产生大量具有活性的天然产物。植物内生真菌多糖作为一类重要的大分子天然产物,越来越多证据表明其具有重要的研究价值。植物内生真菌的来源、培养和发酵,植物内生真菌均一多糖的理化性质和结构特征等都与其多糖的生理活性密切相关。为此,从菌株选择、培养条件、多糖分离纯化、理化特征、生物活性和对植物的作用等方面对植物内生真菌多糖的研究进行了综述,以期为植物内生真菌多糖的生理生化作用、开发等深入研究提供参考。
潘峰, 侯凯, 刘云, 吴卫. 植物内生真菌产多糖类天然产物研究进展[J]. 生物技术通报, 2020, 36(7): 158-169.
PAN Feng, HOU Kai, LIU Yun, WU Wei. Review for Research on Polysaccharides Produced by Endophytic Fungi Derived from Plants[J]. Biotechnology Bulletin, 2020, 36(7): 158-169.
[1] 陈海霞. 活性多糖的结构与效应关系[J]. 科学观察, 2013, 8(6):53-55. [2] Mahapatra S, Banerjee D. Fungal exopolysaccharide:production, composition and applications[J]. Microbiology Insights, 2013, 6:MBI. S10957. [3] Hyde KD, Soytong K.The fungal endophyte dilemma[J]. Fungal Diversity, 2008, 33:163-173. [4] Li P, Luo C, Sun W, et al.In vitro antioxidant activities of polysaccharides from endophytic fungus Fusarium oxysporum Dzf17[J]. African Journal of Microbiology Research, 2011, 5:5990-5993. [5] Zeng YJ, Yang HR, Wu XL, et al.Structure and immunomodulatory activity of polysaccharides from Fusarium solani DO7 by solid-state fermentation[J]. International Journal of Biological Macromolecules, 2019, 137:568-575. [6] Wang Z, Chen P, Tao N, et al.Anticancer activity of polysaccharides produced from glycerol and crude glycerol by an endophytic fungus Chaetomium globosum CGMCC 6882 on human lung cancer A549 cells[J]. Biomolecules, 2018, 8:171. [7] Diamantopoulou P, Papanikolaou S, Komaitis M, et al.Patterns of major metabolites biosynthesis by different mushroom fungi grown on glucose-based submerged cultures[J]. Bioprocess and Biosystems Engineering, 2014, 37:1385-1400. [8] Chen Y, Mao W, Tao H, et al.Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16[J]. Bioresource Technology, 2011, 102:8179-8184. [9] 王春宴. 海洋真菌胞外多糖的结构及抗氧化活性研究[D]. 青岛:中国海洋大学, 2013. [10] Li Y, Shan T, Mou Y, et al.Enhancement of palmarumycin C12 and C13 production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12 by oligosaccharides from its host plant. Dioscorea zingiberensis[J]. Molecules, 2012, 17:3761. [11] Li Y, Guo S, Zhu H.Statistical optimization of culture medium for production of exopolysaccharide from endophytic fungus Bionectria ochroleuca and its antitumor effect in vitro[J]. EXCLI Journal, 2016, 15:211. [12] Brandi J, Oliveira ÉC, Monteiro N, et al.Chemical modification of botryosphaeran:structural characterization and anticoagulant activity of a water-soluble sulfonated(1→3)(1→6)-β-D-glucan[J]. Journal of Microbiology & Biotechnology, 2011, 21:1036. [13] Corradi da Silva ML, Fukuda EK, Vasconcelos AFD, et al. Structural characterization of the cell wall D-glucans isolated from the mycelium of Botryosphaeria rhodina MAMB-05[J]. Carbohydrate Research, 2008, 343:793-798. [14] Zhang H, Wang X, Li R, et al.Preparation and bioactivity of exopolysaccharide from an endophytic fungus Chaetomium sp. of the medicinal plant Gynostemma pentaphylla[J]. Pharmacognosy Magazine, 2017, 13:477-482. [15] 陈吴海. 一株藏红花内生真菌多糖的结构及其抗肿瘤、免疫活性研究[D]. 广州:广东药科大学, 2016. [16] Orlandelli RC, Silva MDLCD, Vasconcelos AFD, et al.β-(1→3, 1→6)-d-glucans produced by Diaporthe sp. endophytes:purification, chemical characterization and antiproliferative activity against MCF-7 and HepG2-C3A cells[J]. International Journal of Biological Macromolecules, 2017, 94:431-437. [17] Li P, Mou Y, Shan T, et al.Effects of polysaccharide elicitors from endophytic Fusarium oxysporium Dzf17 on growth and diosgenin production in cell suspension culture of Dioscorea zingiberensis[J]. Molecules, 2011, 16:9003-9016. [18] Guo S, Mao W, Li Y, et al.Structural elucidation of the exopolysaccharide produced by fungus Fusarium oxysporum Y24-2[J]. Carbohydrate Research, 2013, 365:9-13. [19] 潘峰, 姚芸欣, 唐鑫, 等. 瓦布贝母内生真菌Fusarium redolens 6WBY3 多糖的理化性质及抗氧化活性[J]. 微生物学报, 2017, 57:240-253. [20] Zeng YJ, Yang HR, Wang HF, et al.Immune enhancement activity of a novel polysaccharide produced by Dendrobium officinale endophytic fungus Fusarium solani DO7[J]. Journal of Functional Foods, 2019, 53:266-275. [21] Mahapatra S, Banerjee D.Evaluation of in vitro antioxidant potency of exopolysaccharide from endophytic Fusarium solani SD5[J]. International Journal of Biological Macromolecules, 2013, 53:62-66. [22] Pan F, Hou K, Li DD, et al.Exopolysaccharides from the fungal endophytic Fusarium sp. A14 isolated from Fritillaria unibracteata Hsiao et KC Hsia and their antioxidant and antiproliferation effects[J]. International Journal of Biological Macromolecules, 2019, 127:231-240. [23] Chen F, Ren CG, Zhou T, et al.A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accu-mulation in Atractylodes lancea[J]. Scientific Reports, 2016, 6. [24] Li J, Wu G, Qin C, et al.Structure characterization and otoprotective effects of a new endophytic exopolysaccharide from Saffron[J]. Molecules, 2019, 24:749. [25] 王春宴, 樊亚琴, 彭吉星, 等. 红树林内生真菌胞外多糖的分离、化学组成和结构特征[J]. 中国海洋药物, 2013, 32:1-6. [26] Mahapatra S, Banerjee D.Production and structural elucidation of exopolysaccharide from endophytic Pestalotiopsis sp. BC55[J]. International Journal of Biological Macromolecules, 2016, 82:182-191. [27] Banerjee D, Jana M, Mahapatra S.Production of exopolysaccharide by endophytic Stemphylium sp.[J]. Micología Aplicada Internacional, 2009, 21:57-62. [28] Qianliang M, Chunyan S, Chengjian Z, et al.Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis[J]. Journal of Experimental Botany, 2013, 64:5687-5694. [29] Ming Q, Han T, Li W, et al.Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza[J]. Phytomedicine, 2012, 19:330-333. [30] Yurnaliza Y, Jamilah I.Isolation and identification of exopolysac-charide-producing endophytic fungi from leaf midribs of oil palm[J]. Journal of Physics:Conference Series, 2018, 1116:052080. [31] Yang H, He G.Influence of nutritional conditions on exopolysaccharide production by submerged cultivation of the medicinal fungus Shiraia bambusicola[J]. World Journal of Microbiology & Biotechnology, 2008, 24:2903-2907. [32] Subhadip M, Debdulal B.Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5[J]. Carbohydrate Polymers, 2013, 97:627-634. [33] Wang Z, Ning T, Gao K, et al.Utilization of glycerol and crude glycerol for polysaccharide production by an endophytic fungus Chaetomium globosum CGMCC 6882[J]. Preparative Biochemistry and Biotechnology, 2019:1-6. [34] Orlandelli RC, Vasconcelos AFD, Azevedo JL, et al.Screening of endophytic sources of exopolysaccharides:preliminary characterization of crude exopolysaccharide produced by submerged culture of Diaporthe sp. JF766998 under different cultivation time[J]. Biochimie Open, 2016, 2:33-40. [35] Li P, Xu L, Mou Y, et al.Medium optimization for exopolysaccharide production in liquid culture of endophytic fungus Berkleasmium sp. Dzf12[J]. International Journal of Molecular Sciences, 2012, 13:11411. [36] Zhong L, Niu B, Tang L, et al.Effects of polysaccharide elicitors from endophytic Fusarium oxysporum Fat9 on the growth, flavonoid accumulation and antioxidant property of Fagopyrum tataricum sprout cultures[J]. Molecules, 2016, 21:1590. [37] Li P, Lu S, Shan T, et al.Extraction optimization of water-extracted mycelial polysaccharide from endophytic fungus Fusarium oxysporum Dzf17 by response surface methodology[J]. International Journal of Molecular Sciences, 2012, 13:5441-5453. [38] Liu J, Wang X, Pu H, et al.Recent advances in endophytic exopolysaccharides:production, structural characterization, physiological role and biological activity[J]. Carbohydrate Polymers, 2017, 157:1113-1124. [39] 潘峰, 张慧慧, 许晓燕, 等. 瓦布贝母内生真菌WBS020多糖理化性质和抗氧化活性[J]. 食品与生物技术学报, 2019, 38:144-152. [40] Wang Z, Xue R, Cui J, et al.Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882[J]. International Journal of Biological Macromolecules, 2019, 125:376-382. [41] Mahapatra S, Banerjee D.Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5[J]. Carbohydrate Polymers, 2012, 90:683-689. [42] Wang Y, Liu Y, Mao F, et al.Purification, characterization and biological activities in vitro of polysaccharides extracted from tea seeds[J]. International Journal of Biological Macromolecules, 2013, 62:508-513. [43] Zeng YJ, Yang HR, Zong MH, et al.Novel antibacterial polysacch-arides produced by endophyte Fusarium solani DO7[J]. Biores-ource Technology, 2019:121596. [44] Wen L, Xu Y, Wei Q, et al.Modeling and optimum extraction of multiple bioactive exopolysaccharide from an endophytic fungus of Crocus sativus L[J]. Pharmacognosy Magazine, 2018, 14:36. [45] Puri SC, Nazir A, Chawla R, et al.The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans[J]. Journal of Biotechnology, 2006, 122:494-510. [46] Apel K, Hirt H.Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55:373-399. [47] Agarwal A, Sharma RK, Nallella KP, et al.Reactive oxygen species as an independent marker of male factor infertility[J]. Fertility and Sterility, 2006, 86:878-885. [48] Valko M, Leibfritz D, Moncol J, et al.Free radicals and antioxidants in normal physiological functions and human disease[J]. The International Journal of Biochemistry & Cell Biology, 2007, 39:44-84. [49] Desai N, Sharma R, Makker K, et al.Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men[J]. Fertility and Sterility, 2009, 92:1626-1631. [50] Wang Y, Li Y, Li S, et al.Extracellular polysaccharides of endoph-ytic fungus Alternaria tenuissima F1 from Angelica sinensis:production conditions, purification, and antioxidant properties[J]. International Journal of Biological Macromolecules, 2019, 133:172-183. [51] Jia M, Chen L, Xin HL, et al.A friendly relationship between endophytic fungi and medicinal plants:A systematic review[J]. Frontiers in Microbiology, 2016, 7:906. [52] Li P, Luo C, Luo R, et al.Effects of polysaccharides and oligosaccharides from endophytic fungus Berkleasmium sp. Dzf12 on diosgenin accumulation in Dioscorea zingiberensis cell and seedling cultures[J]. African Journal of Microbiology Research, 2013, 7:3049-3055. [53] Stierle A, Strobel G, Stierle D.Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew[J]. Science, 1993, 260(5105):214-216. [54] 郭良栋. 内生真菌研究进展[J]. 菌物学报 2001, 20:148-152. [55] 蒋中海. 最有开发前景药用真菌多糖的研究[C]. 第八届全国中药和天然药物学术研讨会与第五届全国药用植物和植物药学学术研讨会论文集. 北京:中国植物学会, 2005. [56] 张新亮, 黄志坚. 真菌液体发酵与真菌多糖的研究进展[C]. 福建省畜牧兽医学会学术年会论文集. 三明:福建省畜牧兽医学会, 2009. [57] 崔迎, 张志强, 赵昕, 等. 产西贝碱内生真菌的复壮[J]. 菌物研究, 2010, 8:41-43. |
[1] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[2] | 马玉倩, 孙东辉, 岳浩峰, 辛佳瑜, 刘宁, 曹志艳. 具有辅助降解纤维素功能的大斑刚毛座腔菌糖苷水解酶GH61的鉴定、异源表达及功能分析[J]. 生物技术通报, 2023, 39(4): 124-135. |
[3] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[4] | 王祥锟, 宋学宏, 刘金龙, 郭培红, 庄晓峰, 韦良孟, 周凡, 张树宇, 高攀攀, 魏凯. 新型冠状病毒亚单位疫苗研制及其高效免疫增强剂的筛选[J]. 生物技术通报, 2023, 39(1): 305-314. |
[5] | 赵林艳, 官会林, 王克书, 卢燕磊, 向萍, 魏富刚, 杨绍周, 徐武美. 土壤含水量对三七连作土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(7): 215-223. |
[6] | 赵忠娟, 杨凯, 扈进冬, 魏艳丽, 李玲, 徐维生, 李纪顺. 盐胁迫条件下哈茨木霉ST02对椒样薄荷生长及根区土壤理化性质的影响[J]. 生物技术通报, 2022, 38(7): 224-235. |
[7] | 袁存霞, 李艳楠, 张肖冲, 杨瑞, 刘建利, 李靖宇. As3+胁迫下Bacillus sp. ZJS3菌株的生理生化响应特性[J]. 生物技术通报, 2022, 38(7): 236-246. |
[8] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
[9] | 谢果珍, 唐圆, 宁晓妹, 邱集慧, 谭周进. 铁皮石斛多糖对高脂饮食小鼠肠黏膜结构及菌群的影响[J]. 生物技术通报, 2022, 38(2): 150-157. |
[10] | 张业猛, 朱丽丽, 陈志国. 藜麦NHX基因家族鉴定及盐胁迫下表达分析[J]. 生物技术通报, 2022, 38(12): 184-193. |
[11] | 张爱莲, 巴雪丽, 王丹阳, 赵兵. 新疆荒漠肉苁蓉粗多糖对口蹄疫疫苗抗体和T细胞亚群的影响[J]. 生物技术通报, 2021, 37(9): 212-218. |
[12] | 陈建军, 赵怡迪, 曹香林. 脂多糖对鲤肠上皮细胞转录组模式的调控分析[J]. 生物技术通报, 2021, 37(8): 213-220. |
[13] | 张秫华, 方千, 贾红梅, 韩桂琪, 严铸云, 何冬梅. 川芎非根际、根际及根茎内生真菌群落差异分析[J]. 生物技术通报, 2021, 37(4): 56-69. |
[14] | 李平, 胡建燃, 史宝忠, 赵晶磊. 黄芩多糖的提取及其抗氧化和抗肿瘤活性研究[J]. 生物技术通报, 2021, 37(4): 155-163. |
[15] | 王珊珊, 孙敏, 王永霞, 李惟栋, 韩春超. 鸡腿蘑胞外多糖的形貌结构及分子量动态变化与抗氧化的相关性研究[J]. 生物技术通报, 2021, 37(2): 129-137. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1326
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 595
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||