生物技术通报 ›› 2020, Vol. 36 ›› Issue (12): 121-128.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0307
收稿日期:
2020-03-21
出版日期:
2020-12-26
发布日期:
2020-12-22
作者简介:
杨锐佳,女,硕士研究生,研究方向:玉米抗逆基因功能;E-mail:基金资助:
YANG Rui-jia1,2(), ZHANG Zhong-bao1(), WU Zhong-yi1()
Received:
2020-03-21
Published:
2020-12-26
Online:
2020-12-22
摘要:
TIFY蛋白是植物中一类特异性转录因子。根据其保守结构域的不同可分为4个亚家族:TIFY、JAZ、ZML和PPD。通过回顾近年研究成果,从TIFY蛋白的结构、分布及在调控植物的生长发育,响应各种逆境胁迫和不同激素信号等方面的生物学功能进行综述,旨在为TIFY蛋白家族的深入研究与利用奠定理论基础。
杨锐佳, 张中保, 吴忠义. 植物转录因子TIFY家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2020, 36(12): 121-128.
YANG Rui-jia, ZHANG Zhong-bao, WU Zhong-yi. Progress of the Structural and Functional Analysis of Plant Transcription Factor TIFY Protein Family[J]. Biotechnology Bulletin, 2020, 36(12): 121-128.
[1] |
Vanholme B, Grunewald W, Bateman A, et al. The tify family previously known as ZIM[J]. Trends in Plant Science, 2007,12:239-244.
doi: 10.1016/j.tplants.2007.04.004 URL pmid: 17499004 |
[2] |
Nishii A, Takemura M, Fujita H, et al. Characterization of a novel gene encoding a putative single Zinc-finger protein, ZIM, expressed during the reproductive phase in Arabidopsis thaliana[J]. Bioscience, Biotechnology, and Biochemistry, 2000,64(7):1402-1409.
doi: 10.1271/bbb.64.1402 URL pmid: 10945256 |
[3] |
Ebel C, BenFeki A, Hanin M, et al. Characterization of wheat(Triti-cum aestivum)TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance[J]. PLoS One, 2018,13(7):e0200566.
URL pmid: 30021005 |
[4] |
Bai YH, Meng YJ, Huang DL, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J]. Genomics, 2011,98:128-136.
doi: 10.1016/j.ygeno.2011.05.002 URL pmid: 21616136 |
[5] |
Wang WJ, Liu GS, Niu HX, et al. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco(Nicotiana tabacum L. cv. TN90)[J]. Journal of Experimental Botany, 2014,65(8):2147-2160.
URL pmid: 24604735 |
[6] |
Grunewald W, Vanholme B, Pauwels L, et al. Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin[J]. EMBO Rep, 2009,10(8):923-928.
URL pmid: 19575013 |
[7] | 王跃. 杨树TIFY基因家族的鉴定和CRISPR/Cas9技术敲除PtWRKY36基因的研究[D]. 合肥:安徽农业大学, 2018. |
Wang Y. Identification of TIFY gene family in poplar and the PtWRKY36 gene deletion using the technique of CRISPR/Cas9 gene editing[D]. Hefei:Anhui Agricultural University, 2018. | |
[8] |
Ye HY, Du H, Tang N, et al. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice[J]. Plant Molecular Biology, 2009,71(3):291-305.
URL pmid: 19618278 |
[9] |
Zhang ZB, Li XL, Yu R, et al. Isolation, structural analysis, and expression characteristics of the maize TIFY gene family[J]. Molecular Genetics and Genomics, 2015,290(5):1849-1858.
URL pmid: 25862669 |
[10] |
Zhang LH, You J, Chan ZL. Identification and characterization of TIFY family genes in Brachypodium distachyon[J]. Journal of Plant Research, 2015,128:995-1005.
doi: 10.1007/s10265-015-0755-2 URL pmid: 26423998 |
[11] | 胡利宗, 李超琼, 张雯露, 等. 菜豆TIFY基因的全基因组鉴定与系统进化分析[J]. 分子植物育种, 2020,18(10):3132-3140. |
Hu LZ, Li CQ, Zhang WL, et al. Genome-wide identification and phylogenetic analysis of the TIFY genes in common bean(Phase-olus vulgaris)[J]. Molecular Plant Breeding, 2020,18(10):3132-3140. | |
[12] | 黄英. 丹参TIFY基因家族分析及其互作蛋白筛选[D]. 西安:陕西师范大学, 2017. |
Huang Y. Analysis of the TIFY gene family and screening of its interacting proteins[D]. Xi'an:Shanxi Normal University, 2017. | |
[13] |
Chini A, Ben-Romdhane W, Hassairi A, et al. Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses[J]. PLoS One, 2017,12(6):e0177381.
URL pmid: 28570564 |
[14] | 罗冬兰, 巴良杰, 陈建业, 等. 香蕉MaTIFY1转录因子特性及其在成熟过程中基因表达分析[J]. 园艺学报, 2017,44(1):43-52. |
Luo DL, Ba LJ, Chen JY, et al. Characterization and expression analysis of banana MaTIFY1 transcription factor during fruit ripening[J]. Bulletin of Horticulture, 2017,44(1):43-52. | |
[15] |
Zhu D, Bai X, Chen C, et al. GsTIFY10, a novel positive regulator of plant tolerance to bicarbonate stress and a repressor of jasmonate signaling[J]. Plant Molecular Biology, 2011,77(3):285-297.
URL pmid: 21805375 |
[16] | Sirhindi G, Sharma P, Arya P, et al. Genome-wide characterization and expression profiling of TIFY gene family in pigeonpea(Cajanus cajan(L.)Millsp)under copper stress[J]. Journal of Plant Biochemistry and Biotechnology, 2016,25(3):301-310. |
[17] | 赵晓晓. 柳枝稷幼穗分化分期与TIFY基因家族鉴定[D]. 杨凌:西北农林科技大学, 2019. |
Zhao XX. Dvide differentitation process of switchgrass spike into stages and identify TIFY gene family in switchgrass[D]. Yangling:Northwest A&F University of Science and Technology, 2019. | |
[18] |
Huang Z, Jin SH, Guo HD, et al. Genome-wide identification and characterization of TIFY family genes in Moso Bamboo(Phyllostachys edulis)and expression profiling analysis under dehydration and cold stresses[J]. PeerJ, 2016,4:e2620.
doi: 10.7717/peerj.2620 URL pmid: 27812419 |
[19] | Li XQ, Yin XJ, Wang H, et al. Genome-wide identification and analysis of the apple(Malus×domestica Borkh.)TIFY gene family[J]. Tree Genetics & Genomes, 2015,11(1):808. |
[20] |
Yang YX, Ahammed GJ, Wan CP, et al. Comprehensive analysis of TIFY transcription factors and their expression profiles under jasmonic acid and abiotic stresses in watermelon[J]. International Journal of Genomics, 2019. doi: 10. 1155/2019/6813086.
URL pmid: 32855960 |
[21] | Ma YJ, Shu SS, Bai SL, et al. Genome-wide survey and analysis of the TIFY, gene family and its potential role in anthocyanin synjournal in Chinese sand pear(Pyrus pyrifolia)[J]. Tree Genetics & Genomes, 2018,14(2):25. |
[22] |
Zhang YC, Gao M, Singer SD, et al. Genome-wide identification and analysis of the TIFY gene family in grape[J]. PLoS One, 2012,7(9):e44465.
URL pmid: 22984514 |
[23] | Kim Chang K, Han J, Lee J, et al. Gene encoding PnFL-2 with TIFY and CCT motifs may control floral induction in Pharbitis nil[J]. Genes & Genomics, 2011,33(3):229-236. |
[24] |
He DH, Lei ZP, Tang BS, et al. Identification and analysis of the TIFY gene family in Gossypium Raimondii[J]. Genetics and Molecular Research, 2015,14(3):10119-10138.
doi: 10.4238/2015.August.21.19 URL pmid: 26345949 |
[25] | Hakata M, Kuroda M, Ohsumi A, et al. Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem[J]. Bioscience Biotechnology and Biochemistry, 2012,76(11):2129-2134. |
[26] |
White DWR. PEAPOD regulates lamina size and curvature in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006,103:13238-13243.
URL pmid: 16916932 |
[27] |
Baekelandt A, Pauwes L, Wang ZB, et al. Arabidopsis leaf flatness is regulated by PPD2 and NINJA through repression of CYCLIN D3 genes[J]. Plant Physiology, 2018,178(1):217-232.
URL pmid: 29991485 |
[28] |
Shikata M, Matsuda Y, Ando K, et al. Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family[J]. Journal of Experimental Botany, 2004,55(397):631-639.
doi: 10.1093/jxb/erh078 URL |
[29] |
Yu XH, Chen GP, Tang BY, et al. The Jasmonate ZIM-domain protein gene SlJAZ2 regulates plant morphology and accelerates flower initiation in Solanum lycopersicum plants[J]. Plant Science, 2018,267:65-73.
doi: 10.1016/j.plantsci.2017.11.008 URL |
[30] |
Li M, Zhang T, Ge SS, et al. Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis[J]. Journal of Proteomics, 2019,196:81-91.
URL pmid: 30731210 |
[31] | Seo JS, Joo J, Kim MJ, et al. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. Plant Journal, 2011,65(6):907-921. |
[32] | 朱丹, 柏锡, 朱延明, 等. 野生大豆盐碱胁迫相关GsTIFY11b的克隆与功能分析[J]. 遗传, 2012,34(2):230-239. |
Zhu D, Bai X, Zhu YM, et al. Isolation and functional analysis of GsTIFY11b relevant to salt and alkaline stress from Glycine soja[J]. Hereditas, 2012,34(2):230-239. | |
[33] | 阎文飞, 程凡升, 姜新强, 等. 野大豆盐碱胁迫相关GsTIFY6B基因克隆及表达特性分析[J]. 华北农学报, 2018,33(4):82-89. |
Yan WF, Chen FS, Jiang XQ, et al. Cloning and expression analysis of GsTIFY6B associated with saline and alkali stress in Glycine soja[J]. North China Agricultural Bulletin, 2018,33(4):82-89. | |
[34] | Zhao CY, Pan XW, Yu Y, et al. Overexpression of a TIFY family gene, GsJAZ2, exhibits enhanced tolerance to alkaline stress in soybean[J]. Molecular Breeding:New Strategies in Plant Improvement, 2020,40(3):255-265. |
[35] | 孙程, 周晓今, 陈茹梅, 等. 植物JAZ蛋白的功能概述[J]. 生物技术通报, 2014(6):1-8. |
Sun C, Zhou XJ, Chen RM, et al. Comprehensive overview of JAZ proteins in plants[J]. Biotechnology Bulletin, 2014(6):1-8. | |
[36] | Wang YC, Xu HF, Liu WJ, et al. Methyl jasmonate enhances apple’ cold tolerance through the JAZ-MYC2 pathway[J]. Plant Cell Tissue & Organ Culture, 2018,136:78-89. |
[37] | Shen J, Zou Z, Xing H, et al. Genome-wide analysis reveals stress and hormone responsive patterns of JAZ family genes in camellia sinensis[J]. International Journal of Molecular Sciences, 2020,21(7):2433. |
[38] |
Zhou XJ, Yan SG, Sun C, et al. A Maize Jasmonate Zim-Domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis[J]. PLoS One, 2015,10(3):e0121824.
doi: 10.1371/journal.pone.0121824 URL pmid: 25807368 |
[39] |
Liu SH, Zhang PY, Li CC, et al. The moss jasmonate ZIM-domain protein PnJAZ1 confers salinity tolerance via crosstalk with the abscisic acid signaling pathway[J]. Plant Sci, 2019,280:1-11.
URL pmid: 30823987 |
[40] |
Xia XC, Hu QQ, Li W, et al. Cotton(Gossypium hirsutum)JAZ3 and SLR1 function in jasmonate and gibberellin mediated epidermal cell differentiation and elongation[J]. Plant Cell, Tissue and Organ Culture, 2018,133(2):249-262.
doi: 10.1007/s11240-018-1378-9 URL |
[41] |
Um TY, Lee HY, Lee S, et al. Jasmonate ZIM-Domain protein 9 interacts with slender rice 1 to mediate the antagonistic interaction between jasmonic and gibberellic acid signals in rice[J]. Front Plant Sci, 2018,9:1866.
URL pmid: 30619427 |
[42] | Valenzuela-Riffo F, Paz E, Zúiga , Morales-Quintana L, et al. Priming of defense systems and upregulation of MYC2 and JAZ1 genes after botrytis cinerea inoculation in Methyl jasmonate-treated strawberry fruits[J]. Plants, 2020,9(4):447. |
[43] | Ju L, Jing YX, Shi PT, et al. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabid-opsis[J]. New Phytologist, 2019,223(1):246-260. |
[44] | Li YX, Xu M, Wang N, et al. A JAZ Protein in Astragalus sinicus interacts with a leghemoglobin through the TIFY domain and is involved in nodule development and nitrogen fixation[J]. PLoS One, 2015,10(10):e0139964. |
[45] |
Pei TL, Ma PD, Ding K, et al. SmJAZ8 acts as a core repressor regulating JA-induced biosynjournal of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots[J]. Journal of Experimental Botany, 2017,69(7):1663-1678.
URL pmid: 29281115 |
[1] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[2] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[5] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[6] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[7] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[8] | 郭怡婷, 赵文菊, 任延靖, 赵孟良. 菊芋NAC转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(6): 217-232. |
[9] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[10] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[11] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[12] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[13] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[14] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[15] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||