生物技术通报 ›› 2021, Vol. 37 ›› Issue (4): 211-223.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0658
梁鑫1(), 张宝善1(), 刘继瑞2, 余偲1, 陈思雨1
收稿日期:
2020-05-29
出版日期:
2021-04-26
发布日期:
2021-05-13
作者简介:
梁鑫,男,硕士研究生,研究方向:微生物发酵技术;E-mail:基金资助:
LIANG Xin1(), ZHANG Bao-shan1(), LIU Ji-rui2, YU Si1, CHEN Si-yu1
Received:
2020-05-29
Published:
2021-04-26
Online:
2021-05-13
摘要:
草甘膦是世界上应用最广、生产量最大的农业除草剂。它在节省劳动成本、提高农业生产效率、推动转基因农作物的发展等方面发挥了重要作用。随着草甘膦在环境中的不断积累,在越来越多的生物体内发现其残留。草甘膦对植物和微生物的作用机制相似,以微生物为工具研究抗草甘膦转基因农作物是目前研究热点,但有关草甘膦对微生物的生长繁殖及菌群演变等方面的关注却较少。主要综述了草甘膦对微生物的作用机制、对土壤和土壤外有益微生物的影响以及能降解草甘膦的微生物等内容。这对进一步认识和安全应用草甘膦,减少环境污染有一定的指导意义。
梁鑫, 张宝善, 刘继瑞, 余偲, 陈思雨. 草甘膦对微生物影响的研究进展[J]. 生物技术通报, 2021, 37(4): 211-223.
LIANG Xin, ZHANG Bao-shan, LIU Ji-rui, YU Si, CHEN Si-yu. Research Progress of the Effects of Glyphosate on Microorganisms[J]. Biotechnology Bulletin, 2021, 37(4): 211-223.
农产品Agricultural product | FAO/WHO | 美国USA | 欧盟European Union | 加拿大Canada | 中国China |
---|---|---|---|---|---|
大麦Barley | 30 | 30 | 20.0 | 10 | |
玉米Corn | 53 (甜玉米,Wweet corn) | 5.0 0.1 (爆米花,Popcorn) 3.5 (甜玉米,Sweet corn) | 1.0 | 3 | 1 1(鲜食,Fresh) |
黍Millet | 30 | 30 | 0.1 | ||
燕麦Oat | 30 | 30 | 20.0 | 15 35(皮,Shell) | |
稻谷Paddy | 0.1 | 0.1 | 0.1 | ||
黑麦Rye | 30 | 30 | 10.0 | ||
高粱Sorghum | 30 | 30 | 20.0 | ||
小麦Wheat | 30 20 (麸皮,Bran) | 30 | 10.0 | 5 15(麸皮,Bran) | 5(全麦, Whole wheat) 0.5(面粉,Flour) |
豆类Bean | 2 | 5.0 | 2.0 | 4 | 2 |
小扁豆Lentils | 5 | 5.0 | 10.0 | 4 | 5 |
豌豆Pea | 5 | 8.0 | 10.0 | 5 | 5 |
咖啡豆Coffee beans | 1 | 0.1 | |||
荞麦Buckwheat | 30 | 30 | 0.1 | ||
棉籽Cottonseed | 40 | 40 | 10.0 | 40(未精炼,Unrefined) | 0.05(棉籽油,Cottonseed oil) |
亚麻籽Flaxseed | 40 | 10.0 | 3 | ||
芥子籽Mustard seeds | 40 | 10.0 | 10 | ||
花生Peanut | 0.1 | 0.1 | |||
油菜籽Rapeseed | 30 | 20 | 10.0 | 20 | 2 |
芝麻Sesame | 40 | 0.1 | 10 | ||
大豆Soybeans | 20 | 20 | 20.0 | 20 | |
葵花籽Sunflower seeds | 7 | 40 | 20.0 | 7 | |
茶叶Tea | 1 | 2 | 0.1 | 1 | |
苹果Apple | 0.2 | 0.1 | 0.1 | 0.5 | |
甜菜根Beetroot | 15 | 10 | 15 | 10 | |
菜花Cauliflower | 0.2 | 0.1 | 0.1 | ||
胡萝卜Carrot | 5 | 0.1 | 0.1 | ||
鸡肉Chicken | 0.05 | 0.1 | 0.08 | ||
鸡蛋Egg | 0.05 | 0.05 | 0.05 | 0.08 |
表1 主要农产品中草甘膦最大残留量(MRLs,mg/kg)[15]
Table 1 Maximum residues of glyphosate in main agricultural products
农产品Agricultural product | FAO/WHO | 美国USA | 欧盟European Union | 加拿大Canada | 中国China |
---|---|---|---|---|---|
大麦Barley | 30 | 30 | 20.0 | 10 | |
玉米Corn | 53 (甜玉米,Wweet corn) | 5.0 0.1 (爆米花,Popcorn) 3.5 (甜玉米,Sweet corn) | 1.0 | 3 | 1 1(鲜食,Fresh) |
黍Millet | 30 | 30 | 0.1 | ||
燕麦Oat | 30 | 30 | 20.0 | 15 35(皮,Shell) | |
稻谷Paddy | 0.1 | 0.1 | 0.1 | ||
黑麦Rye | 30 | 30 | 10.0 | ||
高粱Sorghum | 30 | 30 | 20.0 | ||
小麦Wheat | 30 20 (麸皮,Bran) | 30 | 10.0 | 5 15(麸皮,Bran) | 5(全麦, Whole wheat) 0.5(面粉,Flour) |
豆类Bean | 2 | 5.0 | 2.0 | 4 | 2 |
小扁豆Lentils | 5 | 5.0 | 10.0 | 4 | 5 |
豌豆Pea | 5 | 8.0 | 10.0 | 5 | 5 |
咖啡豆Coffee beans | 1 | 0.1 | |||
荞麦Buckwheat | 30 | 30 | 0.1 | ||
棉籽Cottonseed | 40 | 40 | 10.0 | 40(未精炼,Unrefined) | 0.05(棉籽油,Cottonseed oil) |
亚麻籽Flaxseed | 40 | 10.0 | 3 | ||
芥子籽Mustard seeds | 40 | 10.0 | 10 | ||
花生Peanut | 0.1 | 0.1 | |||
油菜籽Rapeseed | 30 | 20 | 10.0 | 20 | 2 |
芝麻Sesame | 40 | 0.1 | 10 | ||
大豆Soybeans | 20 | 20 | 20.0 | 20 | |
葵花籽Sunflower seeds | 7 | 40 | 20.0 | 7 | |
茶叶Tea | 1 | 2 | 0.1 | 1 | |
苹果Apple | 0.2 | 0.1 | 0.1 | 0.5 | |
甜菜根Beetroot | 15 | 10 | 15 | 10 | |
菜花Cauliflower | 0.2 | 0.1 | 0.1 | ||
胡萝卜Carrot | 5 | 0.1 | 0.1 | ||
鸡肉Chicken | 0.05 | 0.1 | 0.08 | ||
鸡蛋Egg | 0.05 | 0.05 | 0.05 | 0.08 |
图1 莽草酸合成芳香族氨基酸的途径及草甘膦对 EPSPS 催化反应的作用方式
Fig.1 Pathway of shikimic acid to synthesize aromatic amino acids and the action mode of glyphosate on the catalytic reaction of EPSPS
属/种Genus/species | 草甘膦最小抑菌浓度 Glyphosate minimum inhibitory concentration ,MIC(mg·mL-1) | 菌数量Number of bacteria,log10 | ||
---|---|---|---|---|
MIC值处理 MIC value processing(mean±SD, n=3) | 对照Control(mean±SD, n=3) | |||
巴斯德芽孢杆菌Bacillus badius | 0.150 | 2.24±0.49 | 8.90±0.44 | |
蜡状芽孢杆菌Bacillus cereus | 0.300 | 2.75±0.68 | 8.08±0.12 | |
拟杆菌Bacteriodes vulgatus | 0.600 | 3.54±0.31 | 7.37±0.10 | |
青春双歧杆菌Bifidobacterium adolescentis | 0.075 | 3.87±0.50 | 8.67±0.48 | |
弯曲杆菌Campylobacter coli | 0.150 | 3.07±0.50 | 9.00±0.70 | |
空肠弯曲菌Campylobacter jejuni | 0.150 | 3.90±0.50 | 9.54±0.97 | |
产气荚膜梭菌Clostridium perfringens | 5.000 | 3.37±0.89 | 8.30±0.28 | |
肉毒梭菌A类Clostridium botulinum A C. botulinum A类 | 1.200 | 4.00±0.50 | 8.16±0.32 | |
肉毒梭菌B类Clostridium botulinum B | 1.200 | 3.56±0.45 | 7.60±0.57 | |
大肠杆菌Escherichia coli | 1.200 | 3.15±0.24 | 8.00±0.34 | |
大肠杆菌1917 NissleE. coli 1917 Nissle | 1.200 | 2.35±0.24 | 7.26±0.21 | |
粪肠球菌Enterococcus faecalis | 0.150 | 2.00±0.45 | 8.49±0.58 | |
粪肠球菌Enterococcus faecalis | 0.150 | 2.01±0.34 | 7.06±0.95 | |
念珠菌*Geotrichum candidum* | 0.625 | |||
布氏乳杆菌Lactobacillus buchneri | 0.600 | 4.00±0.88 | 8.00±0.22 | |
干酪乳杆菌Lactobacillus casei | 0.600 | 4.74±0.56 | 8.28±0.35 | |
德氏乳杆菌亚种.保加利亚* L.delbrueckii subsp.bulgaricus * | 1.000 | |||
乳杆菌亚种 Cremoris *L.lactis subsp. Cremoris* | 0.312 | |||
哈尔滨乳杆菌Lactobacillus harbinensis | 0.600 | 5.30±0.44 | 8.40±0.32 | |
厌食里氏杆菌Riemerella anatipestifer | 0.150 | 4.00±0.50 | 7.88±0.50 | |
肠炎沙门氏菌Salmonella enteritidis | 5.000 | 2.35±0.26 | 8.28±0.16 | |
鸡沙门氏菌Salmonella gallinarum | 5.000 | 2.15±0.33 | 8.68±0.20 | |
鼠伤寒沙门氏菌Salmonella typhimurium | 5.000 | 2.75±0.68 | 8.03±0.16 | |
金黄色葡萄球菌Staphylococcus aureus | 0.300 | 5.74±0.58 | 9.00±0.10 | |
溶血链球菌Streptococcus hemolyticus | 0.300 | 5.74±0.32 | 8.08±0.16 | |
缓慢葡萄球菌Staphylococcus lentus | 0.300 | 3.90±0.44 | 8.08±0.14 |
表2 草甘膦对微生物的抑菌效果[11,41]
Table 2 Antibacterial effect of glyphosate on microorganisms
属/种Genus/species | 草甘膦最小抑菌浓度 Glyphosate minimum inhibitory concentration ,MIC(mg·mL-1) | 菌数量Number of bacteria,log10 | ||
---|---|---|---|---|
MIC值处理 MIC value processing(mean±SD, n=3) | 对照Control(mean±SD, n=3) | |||
巴斯德芽孢杆菌Bacillus badius | 0.150 | 2.24±0.49 | 8.90±0.44 | |
蜡状芽孢杆菌Bacillus cereus | 0.300 | 2.75±0.68 | 8.08±0.12 | |
拟杆菌Bacteriodes vulgatus | 0.600 | 3.54±0.31 | 7.37±0.10 | |
青春双歧杆菌Bifidobacterium adolescentis | 0.075 | 3.87±0.50 | 8.67±0.48 | |
弯曲杆菌Campylobacter coli | 0.150 | 3.07±0.50 | 9.00±0.70 | |
空肠弯曲菌Campylobacter jejuni | 0.150 | 3.90±0.50 | 9.54±0.97 | |
产气荚膜梭菌Clostridium perfringens | 5.000 | 3.37±0.89 | 8.30±0.28 | |
肉毒梭菌A类Clostridium botulinum A C. botulinum A类 | 1.200 | 4.00±0.50 | 8.16±0.32 | |
肉毒梭菌B类Clostridium botulinum B | 1.200 | 3.56±0.45 | 7.60±0.57 | |
大肠杆菌Escherichia coli | 1.200 | 3.15±0.24 | 8.00±0.34 | |
大肠杆菌1917 NissleE. coli 1917 Nissle | 1.200 | 2.35±0.24 | 7.26±0.21 | |
粪肠球菌Enterococcus faecalis | 0.150 | 2.00±0.45 | 8.49±0.58 | |
粪肠球菌Enterococcus faecalis | 0.150 | 2.01±0.34 | 7.06±0.95 | |
念珠菌*Geotrichum candidum* | 0.625 | |||
布氏乳杆菌Lactobacillus buchneri | 0.600 | 4.00±0.88 | 8.00±0.22 | |
干酪乳杆菌Lactobacillus casei | 0.600 | 4.74±0.56 | 8.28±0.35 | |
德氏乳杆菌亚种.保加利亚* L.delbrueckii subsp.bulgaricus * | 1.000 | |||
乳杆菌亚种 Cremoris *L.lactis subsp. Cremoris* | 0.312 | |||
哈尔滨乳杆菌Lactobacillus harbinensis | 0.600 | 5.30±0.44 | 8.40±0.32 | |
厌食里氏杆菌Riemerella anatipestifer | 0.150 | 4.00±0.50 | 7.88±0.50 | |
肠炎沙门氏菌Salmonella enteritidis | 5.000 | 2.35±0.26 | 8.28±0.16 | |
鸡沙门氏菌Salmonella gallinarum | 5.000 | 2.15±0.33 | 8.68±0.20 | |
鼠伤寒沙门氏菌Salmonella typhimurium | 5.000 | 2.75±0.68 | 8.03±0.16 | |
金黄色葡萄球菌Staphylococcus aureus | 0.300 | 5.74±0.58 | 9.00±0.10 | |
溶血链球菌Streptococcus hemolyticus | 0.300 | 5.74±0.32 | 8.08±0.16 | |
缓慢葡萄球菌Staphylococcus lentus | 0.300 | 3.90±0.44 | 8.08±0.14 |
降解途径Degradation pathway | 菌株Strain | 来源Source | 中间代谢产物Intermediate metabolite | 草甘膦提供的营养素 Nutrients provided by glyphosate |
---|---|---|---|---|
AMPA途径AMPA pathway | 无色杆菌 LW9 Achromobacter sp. LW9 | 草甘膦工业废水中的活性污泥Sludge in glyphosate industrial wastewater | AMPA | 唯一C源Sole carbon source |
放射土壤杆菌SW9 Agrobacterium radiobacter SW9 | 活性污泥Sludge | AMPA | 唯一C源,少量AMPA Sole carbon source, little AMPA | |
厌氧节杆菌ATCC Arthrobacter atrocyaneus ATCC | 德国农田土壤German farmland soil | AMPA和CO2 AMPA and CO2 | 唯一P源Sole phosphorus source | |
黄杆菌属 GD1 Flavobacterium sp. GD1 | 孟山都活性污泥Monsanto’s sludge | AMPA和磷酸AMPA and phosphoric acid | 唯一P源Sole phosphorus source | |
溶钙芽孢杆菌T20 Geobacillus caldoxylosilyticus T20 | 水中Water | AMPA和乙醛酸AMPA and glyoxylic acid | 唯一P源Sole phosphorus source | |
赭杆菌 Ochrobactrum sp. GDOS | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
假单胞假单胞菌22 Pseudomonas pseudomallei 22 | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
假单胞菌 SG-1 Pseudomonas sp. SG-1 | 富氧液体Oxygen-rich liquid | AMPA | 唯一P源Sole phosphorus source | |
肌氨酸途Sarcosine pathway | 无色杆菌 MPK 7A Achromobacter sp. MPK 7A | 草甘膦污染土壤Glyphosate contaminated soil | 肌氨酸Sarcosine | 唯一P源Sole phosphorus source |
无色杆菌 MPS 12A Achromobacter sp. MPS 12A | AMPA污染土壤AMPA contaminated soil | 肌氨酸,甘氨酸, 甲醛Sarcosine, glycine and formaldehyde | 唯一P源Sole phosphorus source | |
放射土壤杆菌 Agrobacterium radiobacter | 污泥Sludge | AMPA | 唯一P源Sole phosphorus source | |
产碱菌 GL Alcaligenes sp. GL | 从非纯菌培养的产碱菌中分离Isolated from non-pure species of Alcaligenes | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
关节杆菌 GLP-1 Arthrobacter sp. GLP-1 | 被草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
阴沟肠杆菌K7 Enterobacter cloacae K7 | 植物根Root of plant | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
中间赭杆菌Sq20 Ochrobactrum intermedium Sq20 | 草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一C源Sole carbon source | |
假单胞菌 4ASW Pseudomonas sp. 4ASW | 草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸Sarcosine | 唯一P源Sole phosphorus source | |
假单胞菌 GLC11 Pseudomonas sp. GLC11 | 假单胞菌 1号的突变株Mutant strain of Pseudomonas sp. PAO1 | APMA | 唯一P源Sole phosphorus source | |
假单胞菌 PG2982 Pseudomonas sp. PG2982 | 铜绿假单胞菌ATCC 9027的突变株Mutant strain of Pseudomonas aeruginosa ATCC 9027 | 肌氨酸,磷酸,甘氨酸,甲醛Sarcosine, phosphoric acid, glycine and formaldehyde | 唯一P源Sole phosphorus source | |
苜蓿根瘤菌1021 Rhizobiaceae meliloti 1021 | 有链霉素抗性的苜蓿根瘤菌的突变株Mutant strain of Rhizobiaceae meliloti with streptomycin resisfance | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
链霉菌 StC Streptomycete sp. StC | 污水处理厂的生污Sludge from sewage treatment plant | 肌氨酸,甘氨酸sarcosine and glycine | C源、N源或P源 Carbon, nitrogen or phosphorus source | |
青霉Penicillium sp. | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
帚霉属Scopulariopsis sp. | 植物、昆虫体内Plants and insects | AMPA | 唯一P源Sole phosphorus source | |
木霉Trichoderma spp. | 柑橘及其他水果Citrus and other fruits | AMPA | 唯一P源Sole phosphorus source | |
曲霉Aspergillus spp. | 谷物及土壤Grains and soil | AMPA | N源和P源Nitrogen and phosphorus sources | |
双途径Both pathways | 蜡状芽孢杆菌CB4 Bacillus cereus CB4 | 动物肠道及污水Animal intestines and sewage | AMPA、乙醛酸、肌氨酸和甘氨酸AMPA, glyoxylic acid, sarcosine and glycine | C源和P源Carbon source and phosphorus source |
表3 降解草甘膦的微生物[47,51-53]
Table 3 Microorganisms that can degrade glyphosate[47,51-53]
降解途径Degradation pathway | 菌株Strain | 来源Source | 中间代谢产物Intermediate metabolite | 草甘膦提供的营养素 Nutrients provided by glyphosate |
---|---|---|---|---|
AMPA途径AMPA pathway | 无色杆菌 LW9 Achromobacter sp. LW9 | 草甘膦工业废水中的活性污泥Sludge in glyphosate industrial wastewater | AMPA | 唯一C源Sole carbon source |
放射土壤杆菌SW9 Agrobacterium radiobacter SW9 | 活性污泥Sludge | AMPA | 唯一C源,少量AMPA Sole carbon source, little AMPA | |
厌氧节杆菌ATCC Arthrobacter atrocyaneus ATCC | 德国农田土壤German farmland soil | AMPA和CO2 AMPA and CO2 | 唯一P源Sole phosphorus source | |
黄杆菌属 GD1 Flavobacterium sp. GD1 | 孟山都活性污泥Monsanto’s sludge | AMPA和磷酸AMPA and phosphoric acid | 唯一P源Sole phosphorus source | |
溶钙芽孢杆菌T20 Geobacillus caldoxylosilyticus T20 | 水中Water | AMPA和乙醛酸AMPA and glyoxylic acid | 唯一P源Sole phosphorus source | |
赭杆菌 Ochrobactrum sp. GDOS | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
假单胞假单胞菌22 Pseudomonas pseudomallei 22 | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
假单胞菌 SG-1 Pseudomonas sp. SG-1 | 富氧液体Oxygen-rich liquid | AMPA | 唯一P源Sole phosphorus source | |
肌氨酸途Sarcosine pathway | 无色杆菌 MPK 7A Achromobacter sp. MPK 7A | 草甘膦污染土壤Glyphosate contaminated soil | 肌氨酸Sarcosine | 唯一P源Sole phosphorus source |
无色杆菌 MPS 12A Achromobacter sp. MPS 12A | AMPA污染土壤AMPA contaminated soil | 肌氨酸,甘氨酸, 甲醛Sarcosine, glycine and formaldehyde | 唯一P源Sole phosphorus source | |
放射土壤杆菌 Agrobacterium radiobacter | 污泥Sludge | AMPA | 唯一P源Sole phosphorus source | |
产碱菌 GL Alcaligenes sp. GL | 从非纯菌培养的产碱菌中分离Isolated from non-pure species of Alcaligenes | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
关节杆菌 GLP-1 Arthrobacter sp. GLP-1 | 被草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
阴沟肠杆菌K7 Enterobacter cloacae K7 | 植物根Root of plant | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
中间赭杆菌Sq20 Ochrobactrum intermedium Sq20 | 草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一C源Sole carbon source | |
假单胞菌 4ASW Pseudomonas sp. 4ASW | 草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸Sarcosine | 唯一P源Sole phosphorus source | |
假单胞菌 GLC11 Pseudomonas sp. GLC11 | 假单胞菌 1号的突变株Mutant strain of Pseudomonas sp. PAO1 | APMA | 唯一P源Sole phosphorus source | |
假单胞菌 PG2982 Pseudomonas sp. PG2982 | 铜绿假单胞菌ATCC 9027的突变株Mutant strain of Pseudomonas aeruginosa ATCC 9027 | 肌氨酸,磷酸,甘氨酸,甲醛Sarcosine, phosphoric acid, glycine and formaldehyde | 唯一P源Sole phosphorus source | |
苜蓿根瘤菌1021 Rhizobiaceae meliloti 1021 | 有链霉素抗性的苜蓿根瘤菌的突变株Mutant strain of Rhizobiaceae meliloti with streptomycin resisfance | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
链霉菌 StC Streptomycete sp. StC | 污水处理厂的生污Sludge from sewage treatment plant | 肌氨酸,甘氨酸sarcosine and glycine | C源、N源或P源 Carbon, nitrogen or phosphorus source | |
青霉Penicillium sp. | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
帚霉属Scopulariopsis sp. | 植物、昆虫体内Plants and insects | AMPA | 唯一P源Sole phosphorus source | |
木霉Trichoderma spp. | 柑橘及其他水果Citrus and other fruits | AMPA | 唯一P源Sole phosphorus source | |
曲霉Aspergillus spp. | 谷物及土壤Grains and soil | AMPA | N源和P源Nitrogen and phosphorus sources | |
双途径Both pathways | 蜡状芽孢杆菌CB4 Bacillus cereus CB4 | 动物肠道及污水Animal intestines and sewage | AMPA、乙醛酸、肌氨酸和甘氨酸AMPA, glyoxylic acid, sarcosine and glycine | C源和P源Carbon source and phosphorus source |
[1] | 杨益军, 张波, 吴江 . 全球( 中国) 草甘膦行业(市场)发展状况及2020年展望[J]. 农药市场信息, 2020(3):28-30. |
Yang YJ, Zhang B, Wu J. Global (China) glyphosate industry(market) development status and 2020 outlook[J]. Pesticide Market News, 2020(3):28-30. | |
[2] |
Pollegioni L, Schonbrunn E, Siehl D. Molecular basis of glyphosate resistance-different approaches through protein engineering[J]. FEBS Journal, 2011,278(16):2753-2766.
doi: 10.1111/j.1742-4658.2011.08214.x URL |
[3] |
Portier CJ, Armstrong BK, Baguley BC, et al. Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer(IARC)and the European Food Safety Authority(EFSA)[J]. Journal of Epidemiology and Community Health, 2016,70(8):741-745.
doi: 10.1136/jech-2015-207005 URL |
[4] | Ledoux ML, Hettiarachchy N, Yu X, et al. Penetration of glyphosate into the food supply and the incidental impact on the honey supply and bees[J]. Food Control, 2020. 109. |
[5] | Dai P, Yan Z, Ma , et al. The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro[J]. Journal of Agricultural & Food Chemistry, 2018,29(66):7786-7793. |
[6] |
Berg CJ, Peter KH, Glenda D, et al. Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees[J]. PLoS One, 2018,13(7):e0198876.
doi: 10.1371/journal.pone.0198876 URL |
[7] |
Cuhra M. Review of GMO safety assessment studies:glyphosate residues in Roundup Ready crops is an ignored issue[J]. Environmental Sciences Europe, 2015,27(1):1-14.
doi: 10.1186/s12302-014-0033-2 URL |
[8] |
Shehata AA, Wieland S, Philipp S, et al. Distribution of glyphosate in chicken organs and its reduction by humic acid supplementation[J]. Journal of Poultry Science, 2014,51(3):333-337.
doi: 10.2141/jpsa.0130169 URL |
[9] |
Shehata AA, Kühnert M, Haufe S, et al. Neutralization of the antimicrobial effect of glyphosate by humic acid in vitro[J]. Chemosphere, 2014,104:258-261.
doi: 10.1016/j.chemosphere.2013.10.064 pmid: 24268342 |
[10] |
Portier CJ, Bruce KA, Bruce C, et al. Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer(IARC)and the European Food Safety Authority(EFSA)[J]. Journal of Epidemiology and Community Health, 2016,70(8):741-745.
doi: 10.1136/jech-2015-207005 URL |
[11] |
Clair E, Linn L, Travert C, et al. Effects of roundup® and glyphosate on three food microorganisms:geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus[J]. Current Microbiology, 2012,64(5):486-491.
doi: 10.1007/s00284-012-0098-3 URL |
[12] |
Mesnage R, Antoniou MN. Facts and fallacies in the debate on glyphosate toxicity[J]. Frontiers in Public Health, 2017,5:316.
doi: 10.3389/fpubh.2017.00316 URL |
[13] |
Parvez S, Gerona RR, Proctor C, et al. Glyphosate exposure in pregnancy and shortened gestational length:a prospective Indiana birth cohort study[J]. Environmental Health, 2018,17(1):23.
doi: 10.1186/s12940-018-0367-0 URL |
[14] |
Gasnier C, Coralie D, Nora B, et al. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines[J]. Toxicology, 2009,262(3):184-191.
doi: 10.1016/j.tox.2009.06.006 pmid: 19539684 |
[15] | 食品安全国家标准. GB 2763-2019. 食品中农药最大残留限量[S]. 国家市场监督管理总局, 2019. |
National Food Safety Standard. GB 2763-2019. Maximum residue limits of pesticides in food[S]. State Administration for Market Regulation, 2019. | |
[16] | 张冬, 张宇, 王萌, 等. 草甘膦对植物生理影响的研究进展[J]. 热带农业科学, 2016(36):55-61. |
Zhang D, Zhang Y, Wang M, et al. Research progressin the effects of glyphosate on plant physiology[J]. Chinese Journal of Tropical Agriculture, 2016(36):55-61. | |
[17] | 江晶洁, 刘涛, 林双君. 基于莽草酸途径微生物合成芳香族化合物及其衍生物的研究进展[J]. 生命科学, 2019,31(5):430-448. |
Jiang JJ, Liu T, Liu SJ. Research progress on the biosynjournal of aromatic compounds by microorganisms[J]. Chinese Bulletin of Life Sciences, 2019,31(5):430-448. | |
[18] | 陈世国, 强胜, 毛婵娟. 草甘膦作用机制和抗性研究进展[J]. 植物保护, 2017,43(2):17-24. |
Chen SG, Qiang S, Mao CJ. Mechanism of action of glyphosate and research advances in glyphosate resistance[J]. Plant Protection, 2017,43(2):17-24. | |
[19] |
Pollegioni L, Schonbrunn E, Siehl D. Molecular basis of glyphosate resistance-different approaches through protein engineering[J]. FEBS Journal, 2011,278(16):2753-2766.
doi: 10.1111/j.1742-4658.2011.08214.x URL |
[20] |
Duke SO, Lydon J, Koskinen WC, et al. Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops[J]. Journal of Agricultural and Food Chemistry, 2012,60(42):10375-10397.
doi: 10.1021/jf302436u URL |
[21] | 张云彤, 王瑞楠, 孙墨楠, 等. 抗草甘膦转基因作物分子育种策略[J]. 生物技术, 2019,29(3):288-293, 307. |
Zhang YT, Wang RN, Sun MN, et al. Molecular breeding strategy for glyphosate resistant transgenic crops[J]. Biotechnology, 2019,29(3):288-293, 307. | |
[22] |
Hart MR, Brookes PC. Soil microbial biomass and mineralisation of soil organic matter after 19 years of cumulative field applications of pesticides[J]. Soil Biology & Biochemistry, 1996,28(12):1641-1649.
doi: 10.1016/S0038-0717(96)00249-0 URL |
[23] |
Powell JR, Levy-Booth DJ, Gulden RH, et al. Effects of genetically modified, Herbicide-tolerant crops and their management on soil food web properties and crop litter decomposition[J]. Journal of Applied Ecology, 2009,46(2):388-396.
doi: 10.1111/jpe.2009.46.issue-2 URL |
[24] |
Grandcoin A, Piel S, Baures E. Amino methyl phosphonic acid(AMPA)in natural waters:its sources, behavior and environmentalfate[J]. Water Research, 2017,117:187-197.
doi: S0043-1354(17)30245-2 pmid: 28391123 |
[25] | 陶波, 蒋凌雪, 沈晓峰, 等. 草甘膦对土壤微生物的影响[J]. 中国油料作物学报, 2011,33(2):162-168. |
Tao B, Jiang LX, Shen XF, et al. Effects of glyphosate on soil microorganisms[J]. Chinese Journal of Oil Crop Sciences, 2011,33(2):162-168. | |
[26] | 邓晓, 李雅琦. 草甘膦对土壤微生物影响的研究[J]. 农药, 2005(2):59-62. |
Deng X, Li YQ. Study on the effect of glyphosate on soil microorganisms[J]. Agrochemicals, 2005(2):59-62. | |
[27] |
Newman MM, Lorenz N, Hoilett N, et al. Changes in rhizosphere bacterial gene expression following glyphosate treatment[J]. The Science of the Total Environment, 2016,553(15):32-41.
doi: 10.1016/j.scitotenv.2016.02.078 URL |
[28] |
Zobiole LHS, Kremer RJ, Oliveira RS, et al. Glyphosate affects micro-organisms in rhizospheres of glyphosate-resistant soybeans[J]. J Appl Microbiol, 2011,110(1):118-127.
doi: 10.1111/jam.2010.110.issue-1 URL |
[29] |
Newman M, Nigel H, Nicola L, et al. Glyphosate effects on soil rhizosphere-associated bacterial communities[J]. Science of the Total Environment, 2016,543:155-160.
doi: 10.1016/j.scitotenv.2015.11.008 URL |
[30] |
Mandl K, Cantelmo C, Gruber E, et al. Effects of glyphosate-, glufosinate- and flazasulfuron-based herbicides on soil microorganisms in a vineyard[J]. Bulletin of Environmental Contamination and Toxicology, 2018,101(5):562-569.
doi: 10.1007/s00128-018-2438-x URL |
[31] | 陈望舒. 草甘膦对土壤生态的影响和毒理研究[D]. 扬州:扬州大学, 2019. |
Chen WS. Research on the effects of glyphosate on soil ecology and toxicology[D]. Yangzhou:Yangzhou University, 2019. | |
[32] | 吴雪楠, 孙菁菁, 罗园园, 等. 草甘膦对土壤微生物能量代谢的影响[J]. 化学与生物工程, 2016,33(4):18-21. |
Wu XN, Sun JJ, Luo YY, et al. Effect of glyphosate on energy metabolism of soil microorganisms[J]. Chemistry & Bioengineering, 2016,33(4):18-21. | |
[33] |
Liu Y, Li Y, Hua X, et al. Glyphosate application increased catabolic activity of gram-negative bacteria but impaired soil fungal community[J]. Environmental Science and Pollution Research, 2018,25(15):14762-14772.
doi: 10.1007/s11356-018-1676-0 URL |
[34] |
Berg J, Tom-Petersen A, Nybroe O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance[J]. Letters in Applied Microbiology, 2005,40(2):146-151.
doi: 10.1111/lam.2005.40.issue-2 URL |
[35] |
Jacobsen CS, Hjelms MH. Agricultural soils, pesticides and microbial diversity[J]. Current Opinion in Biotechnology, 2014,27:15-20.
doi: 10.1016/j.copbio.2013.09.003 pmid: 24863892 |
[36] | 刘慧璐. 抗草甘膦转基因大豆对土壤微生物和酶活性的影响[D]. 太原:山西大学, 2019. |
Liu HL. Effects of glyphosate-resistant transgenic soybean on soil microbe and enzyme activity[D]. Taiyuan:Shanxi University, 2019. | |
[37] | Druille M, Cabello MN, Omacini M, et al. Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi[J]. Applied Soil Ecology, 2013(64):99-103. |
[38] | Chakravarty P, Sidhu SS. Effect of glyphosate, hexazinone and triclopyr on in vitro growth of five species of ectomycorrhizal fungi[J]. European Journal of Forest Pathology, 1987,17(4-5):204-210. |
[39] | Braconi D, Sotgiu M, Millucci L, et al, Comparative analysis of the effects of locally used herbicides and their active ingredients on a wild-type wine Saccharomyces cerevisiae strain[J]. Journal of Agricultural & Food Chemistry, 2006(54):3163-3172. |
[40] |
Everett KDE, Dickerson HW. Ichthyophthirius multifiliis and tetrahymena thermophile tolerate glyphosate but not a commercial herbicidal formulation[J]. Bull Environ Contam Toxicol, 2003,70(4):731-738.
doi: 10.1007/s00128-003-0044-y URL |
[41] |
Shehata AA, Schrödl W, Aldin AA, et al. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro[J]. Current Microbiology, 2013,66(4):350-358.
doi: 10.1007/s00284-012-0277-2 pmid: 23224412 |
[42] |
Krüger M, Shehata AA, Schrodl W, et al. Glyphosate suppresses the antagonistic effect of Enterococcus spp. on Clostridium botulinum[J]. Anaerobe, 2013,20:74-78.
doi: 10.1016/j.anaerobe.2013.01.005 URL |
[43] | 王军华, 王易芬, 陈蕾蕾, 等. 除草剂草甘膦微生物降解技术研究进展[J]. 江苏农业科学, 2016,44(4):8-12. |
Wang JH, Wang YF, Chen LL, et al. Research progress in microbial degradation technology of herbicide glyphosate[J]. Jiangsu Agricultural Science, 2016,44(4):8-12. | |
[44] | Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation:a review[J]. Environ Manage, 2018,210:10-22. |
[45] |
Xiao Y, Chen S, Gao Y, et al. Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway[J]. Appl Microbiol Biotechnol, 2015,99:2849-2859.
doi: 10.1007/s00253-014-6164-y URL |
[46] |
Yu XM, Yu T, Yin GH. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15[J]. Genetics and Molecular Research, 2015,14(4):14717-14730.
doi: 10.4238/2015.November.18.37 pmid: 26600533 |
[47] |
Zhan H, Feng Y, Fan X, et al. Recent advances in glyphosate biodegradation[J]. Applied Microbiology and Biotechnology, 2018,102(12):5033-5043.
doi: 10.1007/s00253-018-9035-0 pmid: 29705962 |
[48] |
Forlani G, Mangiagalli A, Nielsen E, et al. Degradation of the phosphonate herbicide glyphosate in soil:evidence for a possible involvement of unculturable microorganisms[J]. Soil Biology and Biochemistry, 1999,31(7):991-997.
doi: 10.1016/S0038-0717(99)00010-3 URL |
[49] | Duke SO. Glyphosate degradation in glyphosate-resistant and -susceptible crops and weeds[J]. Journal of Agricultural & Food Chemistry, 2011,59(11):5835-5841. |
[50] | Moore JK, Braymer HD, Larson AD. Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate[J]. Applied & Environmental Microbiology, 1983,46(2):316-320. |
[51] |
Borggaard OK, Gimsing AL. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters:a review[J]. Pest Manag Sci, 2008,64(4):441-456.
pmid: 18161065 |
[52] |
Ermakova IT, Shushkova TV, Sviridov AV, et al. Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Ach-romobacter sp.[J]. Archives of Microbiology, 2017,199(5):665-675.
doi: 10.1007/s00203-017-1343-8 pmid: 28184965 |
[53] |
Mcauliffe KS, Hallas LE, Kulpa CF. Glyphosate degradation by agrobacterium radiobacterisolated from activated sludge[J]. Journal of Industrial Microbiology, 1990,6(3):219-221.
doi: 10.1007/BF01577700 URL |
[54] | Firdous S, Iqbal S, Anwar S, et al. Identification and analysis of 5-enolpyruvylshikimate-3-phosphate synthase(EPSPS)gene from glyphosate resistantr, ochrobactrum intermediumr, Sq20[J]. Pest Management Science, 2017(74):1184-1196. |
[1] | 张坤, 闫畅, 田新朋. 微生物单细胞分离方法研究进展[J]. 生物技术通报, 2023, 39(9): 1-11. |
[2] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[3] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[4] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[5] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[6] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[7] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
[8] | 李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112. |
[9] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[10] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[11] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[12] | 徐汝悦, 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚, 张文超. Cr(VI)的生物修复技术研究进展[J]. 生物技术通报, 2023, 39(6): 49-60. |
[13] | 张晶, 张浩睿, 曹云, 黄红英, 曲萍, 张志萍. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73-87. |
[14] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[15] | 余洋, 刘天海, 刘理旭, 唐杰, 彭卫红, 陈阳, 谭昊. 羊肚菌菌种生产车间气溶胶微生物群落研究[J]. 生物技术通报, 2023, 39(5): 267-275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||