生物技术通报 ›› 2021, Vol. 37 ›› Issue (4): 234-244.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1148
收稿日期:
2020-09-09
出版日期:
2021-04-26
发布日期:
2021-05-13
作者简介:
李梦凡,女,硕士,研究方向:微生物发酵;E-mail:LI Meng-fan(), XIE Yun-xuan, XIE Ning-dong, ZHANG Ai-qing, WANG Guang-yi()
Received:
2020-09-09
Published:
2021-04-26
Online:
2021-05-13
摘要:
角鲨烯是一种重要的多不饱和三萜类物质,能参与人体内多个生理过程,具有增强机体免疫、延缓皮肤衰老、防癌等功效。破囊壶菌在异养条件下能够快速生长并合成较高含量的角鲨烯,具有开发生产角鲨烯的应用潜力。首先概述了破囊壶菌的生态学和生物技术应用潜力,重点讨论了利用破囊壶菌生产角鲨烯的研究现状,并对破囊壶菌合成角鲨烯的代谢途径进行了总结;然后,对影响破囊壶菌发酵生产角鲨烯的5个主要因素进行了综述,并总结了激素类物质对破囊壶菌角鲨烯产量的调控作用。对上述一系列问题的阐述旨在为利用破囊壶菌产角鲨烯的进一步研究开发提供参考。
李梦凡, 谢云轩, 谢宁栋, 张爱卿, 汪光义. 破囊壶菌生产角鲨烯的研究现状[J]. 生物技术通报, 2021, 37(4): 234-244.
LI Meng-fan, XIE Yun-xuan, XIE Ning-dong, ZHANG Ai-qing, WANG Guang-yi. Research Status in the Production of Squalene by Thraustochytrids[J]. Biotechnology Bulletin, 2021, 37(4): 234-244.
菌株 Strain | 角鲨烯产量 Production of squalene | 特点 Characteristics | 发表时间 Published date | 参考文献Reference |
---|---|---|---|---|
Aurantiochytrium sp. BR-MP4-A1 | 0.57 mg/g DCW | 筛选鉴定出一株奥尔兰多属菌株,生物量很高,受到培养条件的高度影响 | 2009 | [26] |
Aurantiochytriummangrovei FB3 | 0.53 mg/g DCW | 通过优化培养基和添加角鲨烯环氧化酶抑制剂(特比萘芬)来提高破囊壶菌的角鲨烯产量 | 2010 | [3] |
Aurantiochytrium sp. BR-MP4-A1 | 0.72 mg/g DCW | 研究了不同氮源之间的相互作用对破囊壶菌的角鲨烯产量的影响 | 2010 | [30] |
Aurantiochytrium sp. 18 W-13a | 198 mg/g DCW | 有较高产量,可用于后续条件优化工作 | 2011 | [31] |
Schizochytrium mangrovei PQ6 | 80.1 mg/g DCW | 从生物柴油生产过程的残渣中提取 | 2014 | [32] |
Schizochytrium sp.CCTCC 209059b | 84mg/g DCW | 首次报道了不皂化物(胆固醇、角鲨烯)在脂质更新阶段的增加 | 2014 | [33] |
Aurantiochytrium sp. Yonez 5-1 | 318 mg/g DCW | 有较高产量,是采用薄层色谱法(TLC)方法筛选得到 | 2014 | [29] |
Schizochytrium limacinum B4D1 | 20.09 mg/g DCW | 通过添加丁醇来降低DHA产量从而提高角鲨烯产量(添加6 g/L丁醇使角鲨烯含量从0.65 mg/g提高到20.09 mg/g) | 2017 | [34] |
Aurantiochytrium sp. T66 | 1.0 g/L | 首次使用木质纤维素作为原料来培养菌株生产角鲨烯 | 2019 | [35] |
Schizochytrium limacinum SR21 | 16.34 mg/g DCW | 用经过化学处理的云杉处理液代替葡萄糖生产角鲨烯和DHA | 2020 | [36] |
表1 现阶段研究较多生产角鲨烯的破囊壶菌菌株汇总
Table 1 Summary of the most squalene-producing chytrid strains studied at the present stage
菌株 Strain | 角鲨烯产量 Production of squalene | 特点 Characteristics | 发表时间 Published date | 参考文献Reference |
---|---|---|---|---|
Aurantiochytrium sp. BR-MP4-A1 | 0.57 mg/g DCW | 筛选鉴定出一株奥尔兰多属菌株,生物量很高,受到培养条件的高度影响 | 2009 | [26] |
Aurantiochytriummangrovei FB3 | 0.53 mg/g DCW | 通过优化培养基和添加角鲨烯环氧化酶抑制剂(特比萘芬)来提高破囊壶菌的角鲨烯产量 | 2010 | [3] |
Aurantiochytrium sp. BR-MP4-A1 | 0.72 mg/g DCW | 研究了不同氮源之间的相互作用对破囊壶菌的角鲨烯产量的影响 | 2010 | [30] |
Aurantiochytrium sp. 18 W-13a | 198 mg/g DCW | 有较高产量,可用于后续条件优化工作 | 2011 | [31] |
Schizochytrium mangrovei PQ6 | 80.1 mg/g DCW | 从生物柴油生产过程的残渣中提取 | 2014 | [32] |
Schizochytrium sp.CCTCC 209059b | 84mg/g DCW | 首次报道了不皂化物(胆固醇、角鲨烯)在脂质更新阶段的增加 | 2014 | [33] |
Aurantiochytrium sp. Yonez 5-1 | 318 mg/g DCW | 有较高产量,是采用薄层色谱法(TLC)方法筛选得到 | 2014 | [29] |
Schizochytrium limacinum B4D1 | 20.09 mg/g DCW | 通过添加丁醇来降低DHA产量从而提高角鲨烯产量(添加6 g/L丁醇使角鲨烯含量从0.65 mg/g提高到20.09 mg/g) | 2017 | [34] |
Aurantiochytrium sp. T66 | 1.0 g/L | 首次使用木质纤维素作为原料来培养菌株生产角鲨烯 | 2019 | [35] |
Schizochytrium limacinum SR21 | 16.34 mg/g DCW | 用经过化学处理的云杉处理液代替葡萄糖生产角鲨烯和DHA | 2020 | [36] |
菌种 Strains | 条件 Condition | 角鲨烯产量 The production of squalene | 发表时间 Published date | 参考文献Reference |
---|---|---|---|---|
Schizochytrium mangrovei FB1 | 20 g/L葡萄糖 | 0.162 mg/g DCW | 2004 | [45] |
Aurantiochytrium sp. BR-MP4-A1 | 30 g/L葡萄糖 | 0.72 mg/g DCW | 2010 | [29] |
Aurantiochytrium sp. strain 18W-13a | 20 g/L葡萄糖 | 198 mg/g DCW | 2011 | [31] |
Aurantiochytrium sp. strain 18W-13a | 20 g/L葡萄糖 | 171 mg/g DCW | 2012 | [61] |
Schizochytrium mangrovei PQ6 | 90 g/L葡萄糖 | 33.04 mg/g DCW | 2014 | [32] |
Aurantiochytrium sp. T66 | 通过有机溶剂预处理获得的桦木水解产物(含30 g/L葡萄糖) | 69.31 mg/g DCW(烧瓶培养)88.47 mg/g DCW(生物反应器培养) | 2019 | [35] |
Schizochytrium limacinum SR21 | 通过有机溶剂预处理获得的云杉水解产物(含60 g/L葡萄糖) | 16.34 mg/g DCW | 2020 | [36] |
Aurantiochytrium sp. T66 | 食用垃圾水解产物(含葡萄糖30 g/L,果糖9.89 g/L) | 71.54 mg/g DCW | 2020 | [62] |
表2 海洋破囊壶菌在最佳碳源条件下的角鲨烯产量
Table 2 Squalene production of marine Thraustochytrids under optimal carbon source conditions
菌种 Strains | 条件 Condition | 角鲨烯产量 The production of squalene | 发表时间 Published date | 参考文献Reference |
---|---|---|---|---|
Schizochytrium mangrovei FB1 | 20 g/L葡萄糖 | 0.162 mg/g DCW | 2004 | [45] |
Aurantiochytrium sp. BR-MP4-A1 | 30 g/L葡萄糖 | 0.72 mg/g DCW | 2010 | [29] |
Aurantiochytrium sp. strain 18W-13a | 20 g/L葡萄糖 | 198 mg/g DCW | 2011 | [31] |
Aurantiochytrium sp. strain 18W-13a | 20 g/L葡萄糖 | 171 mg/g DCW | 2012 | [61] |
Schizochytrium mangrovei PQ6 | 90 g/L葡萄糖 | 33.04 mg/g DCW | 2014 | [32] |
Aurantiochytrium sp. T66 | 通过有机溶剂预处理获得的桦木水解产物(含30 g/L葡萄糖) | 69.31 mg/g DCW(烧瓶培养)88.47 mg/g DCW(生物反应器培养) | 2019 | [35] |
Schizochytrium limacinum SR21 | 通过有机溶剂预处理获得的云杉水解产物(含60 g/L葡萄糖) | 16.34 mg/g DCW | 2020 | [36] |
Aurantiochytrium sp. T66 | 食用垃圾水解产物(含葡萄糖30 g/L,果糖9.89 g/L) | 71.54 mg/g DCW | 2020 | [62] |
[1] | Patel A, Mu L, Shi Y, et al. Novel biorefinery approach aimed at vegetarians reduces the dependency on marine fish stocks for obtaining squalene and DHA[J]. ACS Sustainable Chemistry & Engineering, 2020,8(23):8803-8813. |
[2] |
Aioi A, Shimizu T, Kuriyama K. Effect of squalene on superoxide anion generation induced by a skin irritant, lauroylsarcosine[J]. International Journal of Pharmaceutics, 1995,113(2):159-164.
doi: 10.1016/0378-5173(94)00190-G URL |
[3] |
Fan KW, Aki T, Chen F, et al. Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine[J]. World Journal of Microbiology & Biotechnology, 2010,26(7):1303-1309.
doi: 10.1007/s11274-009-0301-2 URL |
[4] |
Patel A, Rova U, Christakopoulos P, et al. Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate[J]. Science of the Total Environment, 2020,736:139691.
doi: 10.1016/j.scitotenv.2020.139691 URL |
[5] |
Tran TLN, Miranda AF, Mouradov A, et al. Physicochemical characteristics of protein isolated from thraustochytrid oilcake[J]. Foods, 2020,9(6):779.
doi: 10.3390/foods9060779 URL |
[6] | Turoczy NJ, Laurenson LJB, Allinson G, et al. Observations on metal concentrations in three species of shark(Deania calcea, Centroscymnus crepidater, and Centroscymnus owstoni)from southeastern Australian waters[J]. Journal of Agricultural & Food Chemistry, 2000,48(9):4357-4364. |
[7] |
Otagiri M, Khalid A, Moriya S, et al. Novel squalene-producing thraustochytrids found in mangrove water[J]. Biosci Biotechnol Biochem, 2017,81:2034-2037.
doi: 10.1080/09168451.2017.1359485 URL |
[8] |
Storelli MM, Ceci E, Storelli A, et al. Polychlorinated biphenyl, heavy metal and methylmercury residues in hammerhead sharks:contaminant status and assessment[J]. Marine Pollution Bulletin, 2003,46(8):1035-1039.
doi: 10.1016/S0025-326X(03)00119-X URL |
[9] | Han JY, Seo SH, Song JM, et al. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains[J]. Journal of Industrial Microbiology & Biotechnology, 2018,45(4):239-251. |
[10] |
Gohil N, Bhattacharjee G, Khambhati K, et al. Engineering strategies in microorganisms for the enhanced production of squalene:advances, challenges and opportunities[J]. Frontiers in Bioengineering and Biotechnology, 2019,7:00114.
doi: 10.3389/fbioe.2019.00114 URL |
[11] |
Bhattacharjee P, Shukla VB, Singhal RS, et al. Studies on fermentative production of squalene[J]. World Journal of Microbiology & Biotechnology, 2001,17(8):811-816.
doi: 10.1023/A:1013573912952 URL |
[12] | Fornairon BC, Demaretz V, Rosenfeld E, et al. Oxygen addition and sterol synjournal in Saccharomyces cerevisiae during enological fermentation[J]. Journal of Bioence & Bioengineering, 2002,93(2):176-182. |
[13] |
Chen F, Johns MR. Relationship between substrate inhibition and maintenance energy of Chlamydomonas reinhardtii in heterotrophic culture[J]. Journal of Applied Phycology, 1996,8(1):15-19.
doi: 10.1007/BF02186216 URL |
[14] | Fan KW, Jiang Y, Fan YW, et al. Lipid characterization of mangrove thraustochytrid--Schizochytrium mangrovei.[J]. Journal of Agricultural & Food Chemistry, 2007,55(8):2906-2910. |
[15] |
Sparrow FK. Biological Observations on the marine fungi of woods hole waters[J]. Biological Bulletin, 1936,70(2):236-263.
doi: 10.2307/1537470 URL |
[16] |
Fossier LM, Lee KC, Nichols PD, et al. Taxonomy, ecology and biotechnological applications of thraustochytrids:A review[J]. Biotechnology Advances, 2017,36(1):26-46.
doi: 10.1016/j.biotechadv.2017.09.003 URL |
[17] |
Cavalier-Smith T. Thraustochytrids are chromists not fungi:signature sequences of heterokonta[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 1994,346:387-397.
doi: 10.1098/rstb.1994.0156 URL |
[18] |
Byreddy AR, Gupta A, Barrow CJ, et al. A quick colorimetric method for total lipid quantification in microalgae[J]. Microbiol Methods, 2016,125:28-32.
doi: 10.1016/j.mimet.2016.04.002 URL |
[19] | Manikan V, Nazir MYM, Kalil, MS, et al. A new strain of docosahexaenoic acid producing microalga from Malaysian coastal waters[J]. Algal Research, 2015,9:42-47. |
[20] |
Christian M, Caroline B, Cecile M, et al. The lipid metabolism in thraustochytrids[J]. Progress in Lipid Research, 2019,76:101007.
doi: S0163-7827(19)30050-5 pmid: 31499096 |
[21] |
Bochdansky AB, Clouse MA, Herndl GJ. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow[J]. ISME Journal, 2017,11(2):362-373.
doi: 10.1038/ismej.2016.113 pmid: 27648811 |
[22] | Raghukuma S. Ecology of the marine protists, the Labyrinthulomy-cetes(Thraustochytrids and Labyrinthulids)[J]. Protistol, 2002,38(2):127-145. |
[23] | Hoque MM, Mustafa KAH, Idris MH, et al. Litterfall production in a tropical mangrove of Sarawak, Malaysia[J]. Acta Zoologica Lituanica, 2015,25(2):157-165. |
[24] | Aasen IM, Ertesvåg H, Heggeset TMB, et al. Thraustochytrids as production organisms for docosahexaenoic acid(DHA), squalene, and carotenoids[J]. Applied Microbiology & Biotechnology, 2016,100(10):4309-4321. |
[25] |
Hong WK, Heo SY, Park HM, et al. Characterization of a squalene synthase from the thraustochytrid microalga Aurantiochytrium sp. KRS101[J]. Journal of Microbiology and Biotechnology, 2013,23(6):759-765.
doi: 10.4014/jmb URL |
[26] | Li Q, Chen GQ, Fan KW, et al. Screening and characterization of squalene-producing thraustochytrids from Hong Kong mangroves[J]. Journal of Agricultural & Food Chemistry, 2009,57(10):4267-4272. |
[27] | Masato O, Ammara K, Shigeharu M, et al. Novel squalene-producing thraustochytrids found in mangrove water[J]. Bioscience, Biotechnology and Biochemistry, 2017,8(10):2034-2037. |
[28] |
Gupta A, Singh D, Byreddy AR, et al. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity[J]. Biotechnology Journal, 2016,11(3):345-355.
doi: 10.1002/biot.v11.3 URL |
[29] |
Nakazawa A, Kokubun Y, Matsuura H, et al. TLC screening of thraustochytrid strains for squalene production[J]. Appl Phycol, 2014,26(1):29-41.
doi: 10.1007/s10811-013-0080-x URL |
[30] |
Chen G, Fan KW, Lu FP, et al. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp.[J]. New Biotechnology, 2010,27(4):382-389.
doi: 10.1016/j.nbt.2010.04.005 URL |
[31] |
Kaya K, Nakazawa A, Matsuura H, et al. Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene[J]. Biosci Biotechnol Biochem, 2011,75(11):2246-2248.
doi: 10.1271/bbb.110430 URL |
[32] |
Hoang MH, Ha NC, Thom LT, et al. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process[J]. Journal of Bioscience and Bioengineering, 2014,118(6):632-639.
doi: 10.1016/j.jbiosc.2014.05.015 pmid: 24973317 |
[33] |
Ren LJ, Sun GN, Ji XJ, et al. Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp.[J]. Bioresource Technology, 2014,157:107-113.
doi: 10.1016/j.biortech.2014.01.078 URL |
[34] |
Zhang K, Chen L, Liu J, et al. Effects of butanol on high value product production in Schizochytrium limacinum B4D1[J]. Enzyme and Microbial Technology, 2017,102:9-15.
doi: S0141-0229(17)30051-0 pmid: 28465065 |
[35] |
Patel A, Rova U, Christakopoulos P, et al. Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates[J]. Biotechnol Biofuels, 2019,12(1):255.
doi: 10.1186/s13068-019-1593-6 URL |
[36] |
Christakopoulos P, Patel A, Liefeldt S, et al. Co-production of DHA and squalene by thraustochytrid from forest biomass[J]. Scientific Reports, 2020,10(1):1992.
doi: 10.1038/s41598-020-58728-7 pmid: 32029800 |
[37] | Valitova JN, Sulkarnayeva AG, Minibayeva FV. Plant sterols:Diversity, biosynjournal, and physiological functions[J]. Biochemistry, 2016,81(8):819-834. |
[38] |
Nagegowda DA. Plant volatile terpenoid metabolism:biosynthetic genes, transcriptional regulation and subcellular compartmentation[J]. FEBS Lett, 2010,584(14):2965-2973.
doi: 10.1016/j.febslet.2010.05.045 URL |
[39] |
Dellero Y, Olivier C, Suzanne R, et al. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudocryptic genus Aurantioch-ytrium[J]. Algal Research, 2018,35:125-141.
doi: 10.1016/j.algal.2018.08.018 URL |
[40] |
Wen X, Xi M, Yang W. Production of squalene by microbes:an update[J]. World Journal of Microbiology and Biotechnology, 2016,32(12):195.
doi: 10.1007/s11274-016-2155-8 URL |
[41] |
Xu R, Fazio GC, Matsuda SPT. On the origins of triterpenoid skeletal diversity[J]. Phytochem, 2004,65(3):261-291.
doi: 10.1016/j.phytochem.2003.11.014 URL |
[42] | Katabami A, Li L, Iwasaki M, et al. Production of squalene by squalene synthases and their truncated mutants in Escherichia coli[J]. Journal of Bioence & Bioengineering, 2014,119(2):165-171. |
[43] | Suo J, Tong K, Wu J, et al. Comparative transcriptome analysis reveals key genes in the regulation of squalene and β-sitosterol biosynjournal in Torreya grandis[J]. Industrial Crops & Products, 2019,131:182-193. |
[44] | Xu W, Yao J, Liu L, et al. Improving squalene production by enhancing the NADPH/NADP+ ratio, modifying the isoprenoid-feeding module and blocking the menaquinone pathway in Escherichia coli[J]. Biotechnology for Biofuels, 2019,12(1):13068. |
[45] | Jiang Y, Fan K, Wong R, et al. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei[J]. Journal of Agricultural & Food Chemistry, 2004,52(5):196-200. |
[46] |
Pollier J, Vancaester E, Kuzhiumparambil U, et al. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynjournal[J]. Nature Microbiology, 2019,4(2):226-233.
doi: 10.1038/s41564-018-0305-5 pmid: 30478288 |
[47] | Zhang A, Xie Y, He Y, et al. Bio-based squalene production by Aurantiochytrium sp. through optimization of culture conditions, and elucidation of the putative biosynthetic pathway genes[J]. Bioresource Technology, 2019,287:1214-1215. |
[48] |
Ghimire GP, Thuan NH, Koirala N, et al. Advances in biochemistry and microbial production of squalene and its derivatives[J]. Journal of Microbiology and Biotechnology, 2016,26(3):441-451.
doi: 10.4014/jmb.1510.10039 pmid: 26643964 |
[49] |
Li J, Hao P, Li Z, et al. The role of fluconazole in the regulation of fatty acid and unsaponifiable matter biosynjournal in Schizochytrium sp. MYA 1381[J]. BMC Microbiology, 2019,19:256.
doi: 10.1186/s12866-019-1622-4 URL |
[50] |
Bagmi P, Elias E, Nicholas N, et al. Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803[J]. Metabolic Engineering Communications, 2020,10:e00125.
doi: 10.1016/j.mec.2020.e00125 URL |
[51] | Asadollahi MA, Jérme M, Schalk M, et al. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae[J]. Biotechnology & Bioengineering, 2010,106(1):86-96. |
[52] |
Garaiová M, Zambojová V, Šimová Z. Squalene epoxidase as a target for manipulateon of squalene levels in the yeast Saccharomy-ces cerevisiae[J]. FEMS Yeast Research, 2014,14(2):310-323.
doi: 10.1111/1567-1364.12107 pmid: 24119181 |
[53] | 吴海龙, 崔岩, 成家杨. 破囊壶菌二十二碳六烯酸(DHA)的制备工艺及应用前景[J]. 食品与发酵工业, 2016,42(2):259-264. |
Wu H, Cui Y, Cheng J. Perspective in the production and application of DHA from Thraustochytrids[J]. Food and Fermentation Industries, 2016,42(2):259-264. | |
[54] | King WF, Chen F. Production of high-value products by marine microalgae thraustochytrids-chapter 11[J]. Bioprocessing for Value-Added Products from Renewable Resources, 2007, 293-323. |
[55] | 叶会科, 王秋珍, 何耀东, 汪光义. 破囊壶菌发酵生产DHA的研究进展[J]. 化工进展, 2020,39(8):3235-3245. |
Ye H, Wang Q, He Y, Wang G. Research progress in DHA production by thraustochytrids[J]. Chemical Industry and Engineering Progress, 2020,39(8):3235-3245. | |
[56] |
Ratledge C. Omega-3 biotechnology:errors and omissions[J]. Biotechnology Advances, 2012,30(6):1746-1747.
doi: 10.1016/j.biotechadv.2012.04.002 pmid: 22531169 |
[57] |
Marchan LF, Lee Chang KJ, Nichols PD, et al. Taxonomy, ecology and biotechnological applications of thraustochytrids:A review[J]. Biotechnology Advances, 2017,36(1):26-46.
doi: 10.1016/j.biotechadv.2017.09.003 URL |
[58] |
Ye H, He Y, Xie Y, et al. Fed-batch fermentation of mixed carbon source significantly enhances the production of docosahexaenoic acid in Thraustochytriidae sp. PKU#Mn16 by differentially regulating fatty acids biosynthetic pathways[J]. Bioresource Technology, 2020,297:122402.
doi: 10.1016/j.biortech.2019.122402 URL |
[59] |
Tran TLN, Miranda AF, Gupta A, et al. The nutritional and pharmacological potential of new australian thraustochytrids isolated from mangrove sediments[J]. Marine Drugs, 2020,18(3):151.
doi: 10.3390/md18030151 URL |
[60] | 张静. 高山被孢霉发酵生产多不饱和脂肪酸的初步研究[D]. 无锡:江南大学, 2011. |
Zhang J. The preliminary study of fermentation conditions for polyunsaturated fatty acids production by Mortierellaaplina[D]. Wuxi:Jiangnan University, 2011. | |
[61] |
Nakazawa A, Matsuura H, Kose R, et al. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production[J]. Bioresource Technology, 2012,109:287-291.
doi: 10.1016/j.biortech.2011.09.127 pmid: 22023965 |
[62] |
Patel A, Rova U, Christakopoulos P, et al. Mining of squalene as a valueadded byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate[J]. Science of the Total Environment, 2020,736:139691.
doi: 10.1016/j.scitotenv.2020.139691 URL |
[63] |
Zou YJ, Yang LF, Wang L. Cloning and characterization of a Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus aidingensis AD-6 T[J]. J Microbiol, 2008,46(4):415-421.
doi: 10.1007/s12275-008-0009-2 URL |
[64] | 侯盼. 裂殖壶菌人工海水配方优化及pks3基因功能的初步研究[D]. 青岛:中国海洋大学, 2013. |
Hou P. Formula optimization about artificial seawater and preliminary function research on pks3 gene of Schizochytrium[D]. Qingdao:Ocean University of China, 2013. | |
[65] |
Lewis TE, Nichols PD, Mcmeekin TA. Sterol and squalene content of a docosahexaenoic acid-producing thraustochytrid:influence of culture age, temperature, and dissolved oxygen[J]. Marine Biotechnology, 2001,3(5):439-447.
pmid: 14961336 |
[66] |
Xie Y, Sen B, Wang G. Mining terpenoids production and biosynthetic pathway in thraustochytrids[J]. Bioresource Technology, 2017,244(Pt 2):1269-1280.
doi: 10.1016/j.biortech.2017.05.002 URL |
[67] |
Smith TJ. Squalene:potential chemopreventive agent[J]. Expert Opin Invest Drugs, 2000,9:1841-1848.
doi: 10.1517/13543784.9.8.1841 URL |
[68] |
Wentzinger LF, Bach TJ, Hartmann MA. Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase[J]. Plant Physiology, 2002,130(1):334-346.
doi: 10.1104/pp.004655 URL |
[69] |
Heath C, Kiss R. Cell culture process development:advances in process engineering[J]. Biotechnology Progress, 2007,23(1):46-51.
doi: 10.1021/bp060344e URL |
[70] |
Wang G, Tang W, Xia J, et al. Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses[J]. Engineering in Life Sciences, 2015,15(1):20-29.
doi: 10.1002/elsc.v15.1 URL |
[71] |
Zou X, Xia JY, Chu J, et al. Real-time fluid dynamics investigation and physiological response for erythromycin fermentation scale-up from 50 L to 132 m 3 fermenter[J]. Bioprocess and Biosystems Engineering, 2012,35(5):789-800.
doi: 10.1007/s00449-011-0659-z URL |
[72] |
Duan S, Yuan G, Zhao Y, et al. Simulation of computational fluid dynamics and comparison of cephalosporin C fermentation performance with different impeller combinations[J]. Korean Journal of Chemical Engineering, 2013,30(5):1097-1104.
doi: 10.1007/s11814-013-0010-2 URL |
[73] |
Mohamad NAS, Wan AAQIW, Zul I, et al. Vital parameters for biomass, lipid, and carotenoid production of thraustochytrids[J]. Journal of Applied Phycology, 2020,32:1003-1016.
doi: 10.1007/s10811-019-01970-y URL |
[74] |
Yue CJ, Jiang Y. Impact of methyl jasmonate on squalene biosynjournal in microalga Schizochytrium mangrovei[J]. Process Biochemistry, 2009,44(8):923-927.
doi: 10.1016/j.procbio.2009.03.016 URL |
[75] |
Liechti R, Farmer EE. The jasmonate pathway[J]. Science, 2002,296(5573):1649-1650.
doi: 10.1126/science.1071547 URL |
[76] |
Van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism[J]. Science, 2000,289(5477):295-297.
doi: 10.1126/science.289.5477.295 URL |
[77] | Cornejo-Corona I, Thapa HR, Browne DR, et al. Stress responses of the oil-producing green microalga Botryococcus braunii Race B[J]. PeerJ, 2016,4(12):2748. |
[78] |
Ana CJ, Justin A, Michele F, et al. The unique sterol biosynjournal pathway of three model diatoms consists of a conserved core and diversified endpoints[J]. Algal Research, 2020,48:101902.
doi: 10.1016/j.algal.2020.101902 URL |
[79] |
Audrey S, Michele F, Unnikrishnan K, et al. Methyl jasmonate treatment affects the regulation of the 2- C -methyl-D-erythritol 4-phosphate pathway and early steps of the triterpenoid biosynjournal in Chlamydomonas reinhardtii[J]. Algal Research, 2019,39:101462.
doi: 10.1016/j.algal.2019.101462 URL |
[80] |
Ryder NS. Inhibition of squalene epoxidase and sterol side-chain methylation by allylamines[J]. Biochem Soc Trans, 1990,18:45-46.
doi: 10.1042/bst0180045 URL |
[81] | Kajikawa M, Kinohira S, Ando A, et al. Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes[J]. PLoS One, 2015,10(3):0120446. |
[1] | 丁丽, 都婷婷, 唐琼英, 高权新, 易少奎, 杨国梁. 罗氏沼虾蜕皮周期中内分泌调控和蜕皮信号通路相关基因的表达分析[J]. 生物技术通报, 2023, 39(9): 300-310. |
[2] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[3] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[4] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[5] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[6] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[7] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[8] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[9] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
[10] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[11] | 白苗, 田雯青, 武帅, 王敏, 王利祥, 岳爱琴, 牛景萍, 张永坡, 高春艳, 张武霞, 郭数进, 杜维俊, 赵晋忠. 激素和逆境胁迫对大豆维生素E和γ-TMT表达的影响[J]. 生物技术通报, 2023, 39(10): 148-162. |
[12] | 刘传和, 贺涵, 何秀古, 陈鑫, 刘开, 邵雪花, 赖多, 秦健, 庄庆礼, 匡石滋, 肖维强. 菠萝不同品种对低温胁迫响应差异的生理代谢机制[J]. 生物技术通报, 2023, 39(10): 219-230. |
[13] | 徐俊, 叶雨晴, 牛雅静, 黄河, 张蒙蒙. 菊花根状茎发育的转录组分析[J]. 生物技术通报, 2023, 39(10): 231-245. |
[14] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[15] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||