[1] |
Mcphee I, Gibson L, Kewney J, et al. Cyclic nucleotide signalling:a molecular approach to drug discovery for Alzheimer’s disease[J]. Biochem Soc Trans, 2005,33:1330-1332.
doi: 10.1042/BST0331330
URL
|
[2] |
Moutinho A, Hussey PJ, Trewavas AJ, et al. cAMP acts as a second messenger in pollen tube growth and reorientation[J]. Proc Natl Acad Sci USA, 2001,98:10481-10486.
doi: 10.1073/pnas.171104598
URL
|
[3] |
So WK, et al. Exchange protein directly activated by cAMP(Epac)1 plays an essential role in stress-induced exercise capacity by regulating PGC-1α and fatty acid metabolism in skeletal muscle[J]. Pflugers Arch, 2020,472:195-216.
doi: 10.1007/s00424-019-02344-6
URL
|
[4] |
Tsai SF, Yang C, Wang SC, et al. Effect of thuringiensin on adenylate cyclase in rat cerebral cortex[J]. Toxicology and Applied Pharmacology, 2004,194:34-40.
doi: 10.1016/j.taap.2003.08.015
URL
|
[5] |
陈晓春. 环磷酸腺苷高产菌的选育及其代谢调控[D]. 南京:南京工业大学, 2010.
|
|
Chen XC. Breeding high-yield strain for cyclic adenosine monophosphate production and metabolic regulation[D]. Nanjing:Nanjing University of Technology, 2010.
|
[6] |
Schugerl K. Integrated processing of biotechnology products[J]. Biotechnology Advances, 2000,8:581-599.
|
[7] |
Li L, et al. Bi-stage control of dissolved oxygen to enhance cyclic adenosine monophosphate production by Arthrobacter A302[J]. Bioprocess Biosyst Eng, 2012,35:1281-1286.
doi: 10.1007/s00449-012-0715-3
URL
|
[8] |
Chen XC, Bai JX, Cao JM, et al. Medium optimization for the production of cyclic adenosine 3', 5'-monophosphate by Microbacterium sp. no.205 using response surface methodology[J]. Bioresource Technology, 2009,100:919-924.
doi: 10.1016/j.biortech.2008.07.062
URL
|
[9] |
李志刚, 陈宝峰, 方智博, 等. 基于柠檬酸盐与次黄嘌呤偶合添加的环磷酸腺苷发酵工艺[J]. 食品与发酵工业, 2018,44(11):154-158.
|
|
Li ZG, Chen BF, Fang ZB, et al. A novel fermentation process for cyclic adenosine monophosphate production based on citrate coupling hypoxanthine addition in pulses[J]. Food and Fermentation Industries, 2018,44(11):154-158.
|
[10] |
陈宝峰, 李志刚, 张中华, 等. 低聚磷酸盐与次黄嘌呤偶合添加提高环磷酸腺苷发酵性能[J]. 中国生物工程杂志, 2019,39(8):25-31.
|
|
Chen BF, Li ZG, Zhang ZH, et al. Enhanced cyclic adenosine monophosphate production by coupling addition of low-polyphosphate and hypoxanthine[J]. China Biotechnology, 2019,39(8):25-31.
|
[11] |
Chen XC, et al. Enhanced cyclic adenosine monophosphate production by Arthrobacter A302 through rational redistribution of metabolic flux[J]. Bioresour Technol, 2010,101:3159-3163.
doi: 10.1016/j.biortech.2009.12.081
URL
|
[12] |
Song H, Chen XC, Cao JM, et al. Directed breeding of an Arthrobacter mutant for high-yield production of cyclic adenosine monophophate by N+ ion implantation[J]. Radiation Physics and Chemistry, 2010,79(8):826-830.
doi: 10.1016/j.radphyschem.2010.03.005
URL
|
[13] |
李晨阳, 赵靖, 沈艳华, 等. 糖酵解抑制剂对红曲霉乙醇发酵的影响[J]. 食品与发酵工业, 2017,43(4):56-60.
|
|
Li CY, Zhao J, Shen YH, et al. Effects of the glycolytic inhibitor on ethanol fermentation by Monascus[J]. Food and Fermentation Industries, 2017,43(4):56-60.
|
[14] |
Balzar ES, Linder LE, Sund ML, et al. Effect of fluoride on glucose incorporation and metabolism in cells of Streptococcus mutans[J]. Eur J Oral Sci, 2001,109:182-186.
doi: 10.1034/j.1600-0722.2001.00005.x
URL
|
[15] |
Niu HQ, Chen Y, Yao SW, et al. Metabolic flux analysis of Arthrob-acter sp. CGMCC 3584 for cAMP production based on 13C tracer experiments and gas chromatography-mass spectrometry[J]. J Biotechnol, 2013,169(4):355-361.
|
[16] |
Liu CB, Pan F, Li Y, et al. A combined approach of generalized additive model and bootstrap with small sample sets for fault diagnosis in fermentation process of glutamate[J]. Microbial Cell Factories, 2016,15:1-6.
doi: 10.1186/s12934-015-0402-6
URL
|
[17] |
Duan WH, et al. Changes of physicochemical, bioactive compounds and antioxidant capacity during the brewing process of zhenjiang aromatic vinegar[J]. Molecules, 2019,24(21):1-13.
doi: 10.3390/molecules24010001
URL
|
[18] |
余永建. 镇江香醋有机酸组成及乳酸合成的生物强化[D]. 无锡:江南大学, 2014.
|
|
Yu YJ. Organic acids analysis and enhanced lactic acid synthesis of Zhenjiang aromatic vinegar[D]. Wuxi:Jiangnan University, 2014.
|
[19] |
Chen Y, et al. Control of glycolytic flux in directed biosynjournal of uridine-phosphoryl compounds through the manipulation of ATP availability[J]. Appl Microbiol Biotechnol, 2014,98:6621-6632.
doi: 10.1007/s00253-014-5701-z
URL
|
[20] |
程丽娜, 陆海燕, 曲淑玲, 等. 微生物发酵法生产环磷酸腺苷研究进展[J]. 中国生物工程杂志, 2018,38(2):102-108.
|
|
Cheng LN, Lu HY, Qu SL, et al. Production of cyclic adenosine monophosphate(cAMP)by MICROBIAL FERmentation-A review[J]. China Biotechnology, 2018,38(2):102-108.
|
[21] |
Niu H, Wang JZ, Zhuang W, et al. Comparative transcriptomic and proteomic analysis of Arthrobacter sp CGMCC 3584 responding to dissolved oxygen for cAMP production[J]. Sci Rep, 2018,8:1246-1251.
doi: 10.1038/s41598-017-18889-4
URL
|
[22] |
Ma WL, Liu YF, Shin H, et al. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production[J]. Bioresource Technology, 2018,250:642-649.
doi: 10.1016/j.biortech.2017.10.007
URL
|
[23] |
Niu H, Sun X, Song J, et al. Knockout of pde gene in Arthrobacter sp. CGMCC 3584 and transcriptomic analysis of its effects on cAMP production[J]. Bioprocess and Biosystems Engineering, 2020,43:839-850.
doi: 10.1007/s00449-019-02280-w
URL
|