生物技术通报 ›› 2021, Vol. 37 ›› Issue (5): 117-127.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1140
收稿日期:
2020-09-07
出版日期:
2021-05-26
发布日期:
2021-06-11
作者简介:
李上云,男,硕士研究生,研究方向:葡萄遗传育种与发育生物学;E-mail: 基金资助:
LI Shang-yun(), WANG Chen(), XUAN Xu-xian, REN Yan-hua, FANG Jing-gui
Received:
2020-09-07
Published:
2021-05-26
Online:
2021-06-11
摘要:
种子是葡萄新品种选育的重要材料,但因具有明显的休眠特性,葡萄育种的效率极低。为提高葡萄育种效率很有必要研究其种子休眠特性,从而高效打破葡萄种子休眠。目前,葡萄种子休眠研究已成为葡萄育种的一个重要研究方向。鉴于葡萄种子休眠过程是一个复杂的过程,且因葡萄种群不同其休眠特性也存在重要差异,因而相关研究颇受关注,人们从休眠理论及休眠调控等方面开展了广泛的研究,但目前为止,尚未有葡萄种子休眠方面研究的系统综述。为此,基于前人研究,从葡萄种子休眠类型、休眠机制、休眠解除及促进种子萌发相关调控技术的研究等多个方面开展了综述,以期为建立打破种子休眠、提高种子萌发率的技术体系提供理论依据,从而为提高葡萄杂交育种与品种选育的效率提供新思路和指明方向。
李上云, 王晨, 宣旭娴, 任艳华, 房经贵. 葡萄种子休眠研究进展[J]. 生物技术通报, 2021, 37(5): 117-127.
LI Shang-yun, WANG Chen, XUAN Xu-xian, REN Yan-hua, FANG Jing-gui. Research Progress of Grape Seed Dormancy[J]. Biotechnology Bulletin, 2021, 37(5): 117-127.
[1] | 李秀贞. 葡萄杂交育种方法和流程[J]. 陕西农业科学, 2013,59(3):86-89. |
Li XZ. Grape hybrid breeding methods and procedures[J]. Shanxi Journal of Agricultural Sciences, 2013,59(3):86-89. | |
[2] | 秦子禹, 李上云, 王晨, 等. 河北省葡萄育种成果及现状分析[J]. 中外葡萄与葡萄酒, 2019(5):81-84. |
Qing ZY, Li SY, Wang C, et al. Analysis of grape breeding results and present situation in Hebei province[J]. Chinese and Foreign Grapes and Wine, 2019(5):81-84. | |
[3] | 付楠, 宋慧, 王淑君, 等. 种子的休眠与破除研究进展[J]. 安徽农业科学, 2018,46(24):10-12, 15. |
Fu N, Song H, Wang SJ, et al. Research progress on seed dormancy and breaking methods[J]. Anhui Agricultural Sciences, 2018,46(24):10-12, 15. | |
[4] | 付婷婷, 程红焱, 宋松泉. 种子休眠的研究进展[J]. 植物学报, 2009,44(5):629-641. |
Fu TT, Cheng HY, Song SQ. Advances in studies of seed dormancy[J]. Acta Botanica Sinica, 2009,44(5):629-641. | |
[5] | 甘阳英, 宋松泉, 李绍华, 等. 葡萄属种子发育的物候、萌发行为及其对冷层积的反应[J]. 植物学报, 2009,44(2):202-210. |
Gan YY, Song SQ, Li SH, et al. Development phenophase and germination behavior of vitis seeds and their response to cold stratification[J]. Acta Botanica Sinica, 2009,44(2):202-210. | |
[6] | 郭华仁. 种子学[M]. 北京: 北京联合出版公司, 2019. |
Guo HR. Seed Science[M]. Beijing: Beijing United Publishing Company, 2019. | |
[7] |
Wang WQ, Song SQ, Li SH, et al. Quantitatived escription of the effect of stratif ication on dormancy release of grape seeds in response to various temperatures and water contents[J]. Journal of Experimental Botany, 2009,60(12):3397-3406.
doi: 10.1093/jxb/erp178 pmid: 19491305 |
[8] |
Ledbetter CA, Shonnard CB. Improved seed development and germination of stenospermic grapes by plant growth regulators[J]. Journal of Horticultural science, 1990,65(3):269-274.
doi: 10.1080/00221589.1990.11516056 URL |
[9] |
甘阳英, 李绍华, 宋松泉, 等. 不同种源的葡萄种子休眠及其解除的研究[J]. 生物多样性, 2008(6):570-577.
doi: 10.3724/SP.J.1003.2008.08049 |
Gan YY, Li SH, Song SQ, et al. Seed dormancy and release of grapes from different proveniences[J]. Biodiversity, 2008(6):570-577. | |
[10] | Nikolaeva NG. Patterns of seed dormancy and germination as related to plant phylogeny and ecological and geographical conditions of their habitats[J]. Russian Journal of Plant Physiology, 1994,46:369-373. |
[11] |
Baskin CC, Baskin JM. Germination ecophysiology of herbaceous plant species in a temperate region[J]. American Journal of Botany, 1988,75:286-305.
doi: 10.1002/ajb2.1988.75.issue-2 URL |
[12] |
Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid:how ethylene and jasmonates control seed germination[J]. Plant Cell Rep, 2012,31(2):253-270.
doi: 10.1007/s00299-011-1180-1 URL |
[13] | Martínez AC, Pluskota WE, Bassel GW. Mechanisms of hormonal regulation of endosperm cap-specific gene expression in tomato seeds[J]. The Plant Journal:for cell and molecular biology, 2012,71(4):757-786. |
[14] |
Amen RD. A model of seed dormancy[J]. The Botanical Review, 1968,34:1-31.
doi: 10.1007/BF02858619 URL |
[15] |
Khan AA. Primary, preventive and permissive roles of hormones in plant systems[J]. The Botanical Review, 1975,41(4):391-420.
doi: 10.1007/BF02860831 URL |
[16] |
Karssen CM, Brinkhorst-van der Swan DL, Breekl AE, et al. Induction of dormancy during seed development by end ogenous abscisic acid:studies on abscisic acid deficient geno types of Arabidopsis thaliana(L.)Heynh[J]. Planta, 1983,157(2):158-165.
doi: 10.1007/BF00393650 pmid: 24264070 |
[17] |
Tu MX, Wang XH, Feng TY. et al. Expression of a grape(Vitis vinifera)bZIP transcription factor, VlbZIP36, in Arabidopsis thaliana confer stolerance of drought stress during seed germination and seedling establishment[J]. Plant Science, 2016,252:311-323.
doi: 10.1016/j.plantsci.2016.08.011 URL |
[18] |
Ding LN, Guo XJ, Li M. et al. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus[J]. Plant Cell Reports, 2019,38(2):243-253.
doi: 10.1007/s00299-018-2365-7 URL |
[19] |
Bill FS. Seeds:Physiology of development, germination and dormancy(3rd edition)[J]. Seed Science Research, 2013,23(4):289-289.
doi: 10.1017/S0960258513000287 URL |
[20] | 卓小能, 林伯年, 沈德绪. 打破巨峰葡萄种子休眠及实生苗阶段发育中内源激素的研究[J]. 果树科学, 1995(2):79-83. |
Zhuo XN, Lin BN, Shen DX. Studies on the breaking dormancy of kyoho grape seeds and the plant endogenous hormones in grape seeding in different development stage[J]. Fruit Tree Science, 1995(2):79-83. | |
[21] | 刘会宁, 王勇. 药剂处理对葡萄种子发芽的影响[J]. 落叶果树, 2001(5):10-11. |
Liu HN, Wang Y. Effect of pharmaceutical treatment on the germination of grape seeds[J]. Deciduous Fruit Tree, 2001(5):10-11. | |
[22] |
Roberts HA. Changes in the numbers of viable weed seeds in soil under different regimes[J]. Weed Research, 1973,13(3):298-303.
doi: 10.1111/wre.1973.13.issue-3 URL |
[23] | Graeber K, Nakabayashi K, Miatton E, et al. Molecular mechanisms of seed dormancy[J]. Plant Cell & Amp Environment, 2012,35(10):1769-1786. |
[24] |
Hiroyuki N. Seed germination and dormancy:The classic story, new puzzles, and evolution[J]. Journal of Integrative Plant Biology, 2019,61(5):541-563.
doi: 10.1111/jipb.12762 |
[25] |
Roberts EH. Seed dormancy and oxidation processes[J]. Symp Soc Exp Biol, 1969,23:161-92.
pmid: 5367167 |
[26] | Roberts EH. Oxidative processes and the control of seed germina-tion[M]// Heydecker W(ed.). Seed Ecology, London:Butter-worth, 1973, 189-231. |
[27] | Roberts EH. Predicting the storge life of seeds[J]. Seed Science and Technology, 1973,1:499-514. |
[28] |
Eiji N, Masanori O, Kiyoshi T, et al. Abscisic acid and the control of seed dormancy and germination[J]. Seed Science Research, 2010,20(2):55-67.
doi: 10.1017/S0960258510000012 URL |
[29] | 廖卓毅, 黄玲玲, 周健, 等. 种子休眠分子调控机理的研究进展[J]. 种子, 2015,34(9):41-47. |
Liao ZY, Huang LL, Zhou J, et al. The research progress of molecular regulation mechanism of seed dormancy[J]. Seeds, 2015,34(9):41-47. | |
[30] |
Nambara E, Marion-Poll A. Abscisic acid biosynjournal and catabolism[J]. Annu Rev Plant Biol, 2005,56:165-85.
pmid: 15862093 |
[31] | 赖晓辉, 李群. 种子休眠与萌发分子机制研究进展[J]. 种子, 2014,33(5):53-58. |
Lai XH, Li Q. Molecular mechanisms of seed dormancy and germination progress[J]. Seeds, 2014,33(5):53-58. | |
[32] | 伍静辉, 谢楚萍, 田长恩, 等. 脱落酸调控种子休眠和萌发的分子机制[J]. 植物学报, 2018,53(4):542-555. |
Wu JH, Xie CP, Tian CE, et al. Molecular mechanism of abscisic acid regulation during seed dormancy and germination[J]. Acta Botanica Sinica, 2018,53(4):542-555. | |
[33] | Cotado A, Garcia MB, Sergi MB. Physiological seed dormancy increases at high altitude in Pyrenean saxifrage(Saxifraga longifolia Lapey.)[J]. Environmental and Experimental Botany, 2020. DOI: 10.1016/j.envexpbot.2019.103929. |
[34] | Nonogaki H. Seed dormancy and germination-emerging mechanisms and new hypotheses[J]. Frontiers in Plant Science, 2014,5:233. |
[35] | 郭丽萍. 种子休眠原因及休眠解除方法研究[D]. 杨凌:西北农林科技大学, 2016 . |
Guo LP. Study on dormancy and dormancy breaking of tree peony seeds[D]. Yangling:Northwest A &F University, 2016. | |
[36] | 杨文秀, 杨忠仁, 李红艳, 等. 促进植物种子萌发及解除休眠方法的研究[J]. 内蒙古农业大学学报:自然科学版, 2008(2):221-224. |
Yang WX, Yang ZR, Li HY, et al. Study on seed dormarybreaking[J]. Journal of Inner Mongolia Agricultural University:Natural Science Edition, 2008(2):221-224. | |
[37] | 崛内昭作作, 牛建新. 关于葡萄胚休眠的研究[J]. 葡萄栽培与酿酒, 1992(3):35-40. |
Ku NZZ, Niu JX. Research on grape embryo dormancy[J]. Viticulture and Winemaking, 1992(3):35-40. | |
[38] | 于桉. 山葡萄种子休眠和解除的初步研究[J]. 中国林副特产, 1993(2):7-9. |
Yu A. A preliminary study on dormancy and release of mountain grape seeds[J]. Forest By-product and Speciality in China, 1993(2):7-9. | |
[39] | 林玲, 张瑛, 黄羽, 等. 不同葡萄品种实生种子萌芽率比较试验[J]. 广西农业科学, 2009,40(12):1590-1592. |
Lin L, Zhang Y, Huang Y, et al. A comparative study on seed germination in different grape cultivars[J]. Guangxi Agricultural Sciences, 2009,40(12):1590-1592. | |
[40] | 李伟东, 程杰山, 高营营, 等. 不同倍性葡萄种子萌芽力研究[J]. 中外葡萄与葡萄酒, 2018(4):50-53. |
Li WD, Cheng JS, Gao YY, et al. The study on seeds germination ability of different ploidies grape varieties[J]. Chinese and Foreign Grapes and Wine, 2018(4):50-53. | |
[41] | Heo JY, Park KS, Yun H, et al. Degree of abortion and germination percentage in seeds derived from interploid crosses between diploid and tetraploid grape cultivars[J]. Horticulture, Environmentand Biotechnology, 2007,48(2):115-121. |
[42] | 罗尧幸, 高飞, 高美英, 等. 8个不同品种葡萄种子萌发力差异分析[J]. 山西农业科学, 2017,45(3):350-353. |
Luo YX, Gao F, Gao MY, et al. The difference analysis of 8 different varieties grape seeds germination ability[J]. Shanxi Agricultural Sciences, 2017,45(3):350-353. | |
[43] | 潘学军, 李德燕, 张文娥. 贵州野生刺葡萄和腺枝葡萄种子萌发生理特性的研究[J]. 北方园艺, 2010(6):15-17. |
Pan XJ, Li DY, Zhang WE. The germinating physiological characteristic of wild Vitis(V. davidii and V. adenoclada)native in Guizhou province[J]. Northern Horticulture, 2010(6):15-17. | |
[44] |
Huseyin C. Effect of bottom heating, germination medium and gibberellic acid treatments on germination of isabella(Vitis labrusca L.)grape seeds[J]. Pakistan Journal of Biological Sciences, 2001,4(8):953-957.
doi: 10.3923/pjbs.2001.953.957 URL |
[45] | 张艳, 宋建伟, 闫锋. GA3对新鲜葡萄种子发芽影响的初步研究[J]. 河南科技学院学报:自然科学版, 2008(3):36-37. |
Zhang Y, Song JW, Yan F. A preliminary study on the effect of GA3 on the germination of fresh grape seeds[J]. Journal of Henan University of Science and Technology:Natural Science Edition, 2008(3):36-37. | |
[46] | 王庆莲, 吴伟民, 赵密珍, 等. GA3处理对欧亚种葡萄种子发芽的影响[J]. 江苏农业科学, 2015,43(11):244-246. |
Wang QL, Wu WM, Zhao MZ, et al. The effect of GA3 treatment on the germination of Eurasian grape seeds[J]. Jiangsu Agricultural Sciences, 2015,43(11):244-246. | |
[47] | Huang LL, Zhang DF, Xia T. Research progress of molecular regulation mechanism of seed dormancy[J]. Agricultural Science & Technology, 2016,17(4):786-791, 848. |
[48] |
Dimitra P, Eleni L, Aliki K, et al. Epigenetic chromatin modifiers in barley:III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA[J]. Plant Physiology and Biochemistry, 2010,48(2):98-107.
doi: 10.1016/j.plaphy.2010.01.002 URL |
[49] |
Liu YX, Geyer R, Martijn VZ, et al. Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy[J]. PLoS One, 2011,6(7):e22241.
doi: 10.1371/journal.pone.0022241 URL |
[50] |
Zheng J, Chen FY, Wang Z, et al. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy[J]. New Phytologist, 2012,193(3):605-616.
doi: 10.1111/nph.2012.193.issue-3 URL |
[51] | 宋松泉, 刘军, 黄荟, 等. 赤霉素代谢与信号转导及其调控种子萌发与休眠的分子机制[J]. 中国科学:生命科学, 2020,50(6):599-615. |
Song SQ, Liu J, Huang H, et al. Gibberellin metabolism and signal transduction and the molecular mechanisms regulating seed germination and dormancy[J]. Science in China:Life Science, 2020,50(6):599-615. | |
[52] | 刘晏, 李俊德, 李家儒. 脱落酸和赤霉素调控种子休眠与萌发研究进展[J]. 生物资源, 2020,42(2):157-163. |
Liu Y, Li JD, Li JR. Advances in research on abscisic acid and gibberellin regulating seed dormancy and germination[J]. Biological Resources, 2020,42(2):157-163. | |
[53] |
Shu K, Xie Q, Zhang HW, et al. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis[J]. PLoS Genet, 2013,9(6):e1003577 .
doi: 10.1371/journal.pgen.1003577 URL |
[54] | 张士财. 棉花新型锌指蛋白GhBCL功能鉴定[D]. 泰安:山东农业大学, 2016. |
Zhang SC. Functional identification of a novel zine finger protein GhBCL from cotton[D]. Tai'an: Shandong Agricultural University, 2016. | |
[55] |
Cao H, Han Y, Li JY, et al. Arabidopsis thaliana seed dormancy 4-like regulates dormancy and germina-tion by mediating the gibberellin pathway[J]. J Exp Bot, 2020,71(3):919-933.
doi: 10.1093/jxb/erz471 URL |
[56] |
Miyako UT, Motoyuki A, Masatoshi N, et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005,437:693-698.
doi: 10.1038/nature04028 URL |
[57] |
Dai MQ, Zhao Y, Ma Q, et al. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism[J]. Plant Physiology, 2007,144(1):121-133.
doi: 10.1104/pp.107.096586 URL |
[58] | Giacomelli L, Rota-Stabelli O, Masuero D, et al. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set:functional characterization and evolution of grapevine gibberellin oxidases[C]. Journal of Experimental Botany, 2013,64(14):4403-4419. |
[59] |
Sun TP. Gibberellin metabolism, perception and signaling pathways in Arabidopsis[J]. The Arabidopsis Book, 2008,6:e0103.
doi: 10.1199/tab.0103 URL |
[60] | Uzun H, Özer N, Akkurt M, et al. Crossing of alphonse lavallee and regent grape cultivars for downy mildew resistant genotypes. 1. seed germination and seedling growth[J]. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 2019,29(zel):72-78. |
[61] | 牛晓雪, 李保华, 李霞, 等. 不同激素和化学试剂处理对石刁柏种子萌发的影响[J]. 中药材, 2020(4):807-812. |
Niu XX, Li BH, Li X, et al. Effects of different hormone and chemical reagent treatments on seed germination of Shi Diaobai[J]. Chinese Medicinal Materials, 2020(4):807-812. |
[1] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[2] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[3] | 丁丽, 都婷婷, 唐琼英, 高权新, 易少奎, 杨国梁. 罗氏沼虾蜕皮周期中内分泌调控和蜕皮信号通路相关基因的表达分析[J]. 生物技术通报, 2023, 39(9): 300-310. |
[4] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[5] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[6] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[7] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[8] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[9] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[10] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[11] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[12] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[13] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[14] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[15] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||