[1] |
曹运齐, 刘云云, 胡南江, 等. 燃料乙醇的发展现状分析及前景展望[J]. 生物技术通报, 2019,35(4):169-175.
|
|
Cao Y, Liu Y, Hu N, et al. Current status and prospects of fuel ethanol production[J]. Biotechnology Bulletin, 2019,35(4):169-175.
|
[2] |
李洪兴, 张笑然, 沈煜, 等. 纤维素乙醇生物加工过程中的抑制物对酿酒酵母的影响及应对措施[J]. 生物工程学报, 2009(9):1321-1328.
|
|
Li H, Zhang X, Shen Y, et al. Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose-a review[J]. Chinese Journal of Biotechnology, 2009(9):1321-1328.
|
[3] |
Gu H, Zhang J, Bao J. Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues[J]. Bioresour Technol, 2014,157:6-13.
URL
pmid: 24518544
|
[4] |
Yi X, Gu H, Gao Q, et al. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment[J]. Biotechnol Biofuels, 2015,8:153.
|
[5] |
Liu ZL. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates[J]. Appl Microbiol Biotechnol, 2011,90(3):809-825.
|
[6] |
Aulitto M, Fusco S, Nickel D, et al. Seed culture pre-adaptation of Bacillus coagulans MA-13 improves lactic acid production in simultaneous saccharification and fermentation[J]. Biotechnol Biofuels, 2019,12:45.
|
[7] |
Gu H, Zhu Y, Peng Y, et al. Physiological mechanism of improved tolerance of Saccharomyces cerevisiae to lignin-derived phenolic acids in lignocellulosic ethanol fermentation by short-term adaptation[J]. Biotechnol Biofuels, 2019,12:268.
URL
pmid: 31755875
|
[8] |
张苗苗, 陆栋, 剡倩, 等. 细胞膜对酿酒酵母乙醇耐受性影响的研究进展[J]. 中国酿造, 2016,35(9):16-19.
|
|
Zhang M, Lu D, Yan Q, et al. Research progress on effect of cell membrane on ethanol tolerance of Saccharomyces cerevisiae[J]. China Brewing, 2016,35(9):16-19.
|
[9] |
Qi Y, Liu H, Chen X, et al. Engineering microbial membranes to increase stress tolerance of industrial strains[J]. Metab Eng, 2019,53:24-34.
|
[10] |
Gu H, Zhang J, Bao J. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue[J]. Biotechnol Bioeng, 2015,112(9):1770-1782.
|
[11] |
巩林林, 杨波, 杨光, 等. 有机溶剂乙腈对酵母菌细胞膜透性的影响[J]. 工业微生物, 2019,49(6):44-49.
|
|
Gong L, Yang B, Yang G, et al. Effects of organic solvent acetonitrile on cell membrane permeability of yeast[J]. Industrial Microbiology, 2019,49(6):44-49.
|
[12] |
郭红, 邱月, 魏建平, 等. 酿酒酵母细胞壁和细胞膜应对高渗胁迫机制研究[J]. 农业机械学报, 2020,51(6):353-359.
|
|
Guo H, Qiu Y, Wei J, et al. Hyperosmotic stress response of Saccharomyces cerevisiae cell wall and cell membrane[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020,51(6):353-359.
|
[13] |
Tian H, Zhou J, Qiao B, et al. Lipidome profiling of Saccharomyces cerevisiae reveals pitching rate-dependent fermentative performance[J]. Appl Microbiol Biotechnol, 2010,87(4):1507-1516.
|
[14] |
Xia J, Jones A, Lau M, et al. Comparative lipidomic profiling of xylose-metabolizing S. cerevisiae and its parental strain in different media reveals correlations between membrane lipids and fermentation capacity[J]. Biotechnol Bioeng, 2011,108(1):12-21.
|
[15] |
Jeucken A, Brouwers J. High-throughput screening of lipidomic adaptations in cultured cells[J]. Biomolecules, 2019,9(2):42.
|
[16] |
Kodedová M, Valachovič M, Csáky Z, et al. Variations in yeast plasma-membrane lipid composition affect killing activity of three families of insect antifungal peptides[J]. Cell Microbiol, 2019,21(12):e13093.
doi: 10.1111/cmi.13093
URL
pmid: 31376220
|
[17] |
De Kroon A, Rijken P, De Smet C. Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective[J]. Prog Lipid Res, 2013,52(4):374-394.
doi: 10.1016/j.plipres.2013.04.006
URL
pmid: 23631861
|
[18] |
Wang X, Jiang S, Zhang W, et al. Study on reproductive toxicity of fine particulate matter by metabolomics[J]. Chinese J of Anal Chem, 2017,45(5):633-640.
|
[19] |
Dong Y, Hu J, Fan L, et al. RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae[J]. Sci Rep, 2017,7:42659.
doi: 10.1038/srep42659
URL
pmid: 28209995
|
[20] |
Yang J, Ding M, Li B, et al. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol[J]. OMICS, 2012,16(7-8):374-386.
doi: 10.1089/omi.2011.0127
URL
pmid: 22734833
|
[21] |
Renne M, De Kroon A. The role of phospholipid molecular species in determining the physical properties of yeast membranes[J]. FEBS Letters, 2018,592(8):1330-1345.
URL
pmid: 29265372
|
[22] |
Dawaliby R, Trubbia C, Delporte C, et al. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells[J]. J Biol Chem, 2016,291(7):3658-3667.
doi: 10.1074/jbc.M115.706523
URL
pmid: 26663081
|
[23] |
Muthukumar K, Nachiappan V. Phosphatidylethanolamine from phosphatidylserine decarboxylase2 is essential for autophagy under cadmium stress in Saccharomyces cerevisiae[J]. Cell Biochem and Biophys, 2013,67(3):1353-1363.
|
[24] |
Koynova R, Caffrey M. Phases and phase transitions of the hydrated phosphatidylethanolamines[J]. Chem and Phys Lipids, 1994,69(1):1-34.
|
[25] |
Yin N, Zhu G, Luo Q, et al. Engineering of membrane phospholipid component enhances salt stress tolerance in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2020,117(3):710-720.
doi: 10.1002/bit.27244
URL
pmid: 31814106
|
[26] |
Wang X, Bai X, Chen D, et al. Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors[J]. Biotechnol Biofuels, 2015,8:142.
URL
pmid: 26379774
|
[27] |
Besada-Lombana P, Fernandez-Moya R, Fenster J, et al. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid[J]. Biotechnol Bioeng, 2017,114(7):1531-1538.
|
[28] |
Ballweg S, Sezgin E, Doktorova M, et al. Regulation of lipid saturation without sensing membrane fluidity[J]. Nat Commun, 2020,11(1):756.
URL
pmid: 32029718
|
[29] |
Liu P, Chernyshov A, Najdi T, et al. Membrane stress caused by octanoic acid in Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 2013,97(7):3239-3251.
URL
pmid: 23435986
|
[30] |
Fang Z, Chen Z, Wang S, et al. Overexpression of OLE1 enhances cytoplasmic membrane stability and confers resistance to cadmium in Saccharomyces cerevisiae[J]. Appl Environ Microb, 2016,83(1):e02319-16.
|
[31] |
Kim H, Kim N, Choi W. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation[J]. Biotechnol Lett, 2011,33(3):509-515.
|