生物技术通报 ›› 2022, Vol. 38 ›› Issue (2): 184-194.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0472
收稿日期:
2021-04-12
出版日期:
2022-02-26
发布日期:
2022-03-09
作者简介:
刘潮,男,博士,副教授,研究方向:植物逆境生物学;E-mail: 基金资助:
LIU Chao(), CHU Hong-long, WU Li-fang, TANG Li-zhou, HAN Li-hong()
Received:
2021-04-12
Published:
2022-02-26
Online:
2022-03-09
摘要:
磷是植物必需的重要营养元素之一,是生物大分子的重要组成部分,在植物生命过程中发挥着不可或缺的作用。维持体内磷稳态对于植物的生长发育和环境应答至关重要。多种信号分子参与调控植物对磷的吸收和转运。植物维持磷稳态主要包括土壤磷的活化、磷的吸收、转运、存储和再利用等过程,涉及磷胁迫响应、转录因子调节、miRNA调节、菌根共生、细胞器间转移等磷调节机制。未来的磷营养机制研究需要跨学科知识的融合,由模式植物研究转向栽培作物。全面总结了植物细胞磷吸收和转运的核心分子及其作用机制的研究进展,旨在为作物品种改良和遗传育种提供重要借鉴。
刘潮, 褚洪龙, 吴丽芳, 唐利洲, 韩利红. 植物磷稳态的调控机制[J]. 生物技术通报, 2022, 38(2): 184-194.
LIU Chao, CHU Hong-long, WU Li-fang, TANG Li-zhou, HAN Li-hong. Regulation Mechanism of Phosphate Homeostasis in Plants[J]. Biotechnology Bulletin, 2022, 38(2): 184-194.
[1] |
Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource[J]. New Phytol, 2003, 157(3):423-447.
doi: 10.1046/j.1469-8137.2003.00695.x URL |
[2] |
Raghothama K, Karthikeyan A. Phosphate acquisition[J]. Plant and Soil, 2005, 274(1-2):37.
doi: 10.1007/s11104-004-2005-6 URL |
[3] |
Williamson LC, Ribrioux SPCP, Fitter AH, et al. Phosphate availability regulates root system architecture in Arabidopsis[J]. Plant Physiol, 2001, 126(2):875-882.
pmid: 11402214 |
[4] |
Lin WY, Lin SI, Chiou TJ. Molecular regulators of phosphate homeostasis in plants[J]. J Exp Bot, 2009, 60(5):1427-1438.
doi: 10.1093/jxb/ern303 URL |
[5] | Baek D, Chun HJ, Yun DJ, et al. Cross-talk between phosphate starvation and other environmental stress signaling pathways in plants[J]. Mol Cells, 2017, 40(10):697-705. |
[6] |
Ham BK, Chen J, Yan Y, et al. Insights into plant phosphate sensing and signaling[J]. Curr Opin Biotechnol, 2018, 49:1-9.
doi: 10.1016/j.copbio.2017.07.005 URL |
[7] |
Dong JS, Ma GJ, Sui LQ, et al. Inositol pyrophosphate InsP8 Acts as an intracellular phosphate signal in Arabidopsis[J]. Mol Plant, 2019, 12(11):1463-1473.
doi: 10.1016/j.molp.2019.08.002 URL |
[8] |
Yang ZL, Yang J, Wang Y, et al. PROTEIN PHOSPHATASE95 regulates phosphate homeostasis by affecting phosphate transporter trafficking in rice[J]. Plant Cell, 2020, 32(3):740-757.
doi: 10.1105/tpc.19.00685 URL |
[9] |
Wang YL, Lambers H. Root-released organic anions in response to low phosphorus availability:recent progress, challenges and future perspectives[J]. Plant Soil, 2020, 447(1/2):135-156.
doi: 10.1007/s11104-019-03972-8 URL |
[10] |
Deng S, Lu L, Li J, et al. Purple acid phosphatase 10c encodes a major acid phosphatase that regulates plant growth under phosphate-deficient conditions in rice[J]. J Exp Bot, 2020, 71(14):4321-4332.
doi: 10.1093/jxb/eraa179 URL |
[11] | Wang Y, Lysøe E, Armarego-Marriott T, et al. Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat[J]. J Exp Bot, 2018, 69(15):3759-3771. |
[12] |
Xu W, Zhang Q, Yuan W, et al. The genome evolution and low-phosphorus adaptation in white lupin[J]. Nat Commun, 2020, 11(1):1069.
doi: 10.1038/s41467-020-14891-z URL |
[13] |
Vengavasi K, Pandey R, Abraham G, et al. Comparative analysis of soybean root proteome reveals molecular basis of differential carboxylate efflux under low phosphorus stress[J]. Genes, 2017, 8(12):341.
doi: 10.3390/genes8120341 URL |
[14] |
Wendrich JR, Yang BJ, Vandamme N, et al. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions[J]. Genes, 2020, 370(6518):eaay4970. DOI: 10. 1126/science. aay4970.
doi: 10. 1126/science. aay4970 |
[15] |
Osorio MB, Ng S, Berkowitz O, et al. SPX4 Acts on PHR1-dependent and -independent regulation of shoot phosphorus status in Arabidopsis[J]. Plant Physiol, 2019, 181(1):332-352.
doi: 10.1104/pp.18.00594 URL |
[16] |
Jia H, Ren H, Gu M, et al. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice[J]. Plant Physiol, 2011, 156(3):1164-1175.
doi: 10.1104/pp.111.175240 URL |
[17] |
Chang MX, Gu M, Xia YW, et al. OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes[J]. Plant Physiol, 2019, 179(2):656-670.
doi: 10.1104/pp.18.01097 pmid: 30567970 |
[18] |
Jyoti A, Kaushik S, Srivastava VK, et al. The potential application of genome editing by using CRISPR/Cas9, and its engineered and ortholog variants for studying the transcription factors involved in the maintenance of phosphate homeostasis in model plants[J]. Semin Cell Dev Biol, 2019, 96:77-90.
doi: 10.1016/j.semcdb.2019.03.010 URL |
[19] |
Xu L, Wang F, Li R, et al. OsCYCP4s coordinate phosphate starvation signaling with cell cycle progression in rice[J]. J Integr Plant Biol, 2020, 62(7):1017-1033.
doi: 10.1111/jipb.v62.7 URL |
[20] |
Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J]. Genes Dev, 2001, 15(16):2122-2133.
doi: 10.1101/gad.204401 URL |
[21] |
Zhou J, Jiao F, Wu Z, et al. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiol, 2008, 146(4):1673-1686.
doi: 10.1104/pp.107.111443 pmid: 18263782 |
[22] |
Ruan W, Guo M, Wu P, et al. Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice[J]. Plant Mol Biol, 2017, 93(3):327-340.
doi: 10.1007/s11103-016-0564-6 URL |
[23] |
Martín AC, del Pozo JC, Iglesias J, et al. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis[J]. Plant J, 2000, 24(5):559-567.
pmid: 11123795 |
[24] |
Shin H, Shin HS, Dewbre GR, et al. Phosphate transport in Arabidopsis:Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments[J]. Plant J, 2004, 39(4):629-642.
doi: 10.1111/tpj.2004.39.issue-4 URL |
[25] | 潘晓阳, 张文睿, 王丹, 等. 植物miRNA在调节低磷胁迫响应中的作用[J]. 植物遗传资源学报, 2020, 21(3):517-524. |
Pan XY, Zhang WR, Wang D, et al. The roles of plant MicroRNA in regulating the response to low phosphorus stress[J]. J Plant Genet Resour, 2020, 21(3):517-524. | |
[26] |
Bari R, Datt Pant B, Stitt M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J]. Plant Physiol, 2006, 141(3):988-999.
doi: 10.1104/pp.106.079707 URL |
[27] |
Du Q, Wang K, Zou C, et al. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize[J]. Plant Physiol, 2018, 177(4):1743-1753.
doi: 10.1104/pp.18.00034 URL |
[28] |
Branscheid A, Sieh D, Pant BD, et al. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis[J]. Mol Plant Microbe Interact, 2010, 23(7):915-926.
doi: 10.1094/MPMI-23-7-0915 URL |
[29] |
Hackenberg M, Shi BJ, Gustafson P, et al. Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions[J]. BMC Plant Biol, 2013, 13:214.
doi: 10.1186/1471-2229-13-214 pmid: 24330740 |
[30] |
Etemadi M, Gutjahr C, Couzigou JM, et al. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis[J]. Plant Physiol, 2014, 166(1):281-292.
doi: 10.1104/pp.114.246595 URL |
[31] |
Zhu ZX, Li D, Cong L, et al. Identification of microRNAs involved in crosstalk between nitrogen, phosphorus and potassium under multiple nutrient deficiency in Sorghum[J]. Crop J, 2021, 9(2):465-475.
doi: 10.1016/j.cj.2020.07.005 URL |
[32] |
Ezawa T, Saito K. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism[J]. New Phytol, 2018, 220(4):1116-1121.
doi: 10.1111/nph.2018.220.issue-4 URL |
[33] |
Burleigh SH, Cavagnaro T, Jakobsen I. Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition[J]. J Exp Bot, 2002, 53(374):1593-1601.
pmid: 12096098 |
[34] |
Müller LM, Harrison MJ. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis[J]. Curr Opin Plant Biol, 2019, 50:132-139.
doi: S1369-5266(18)30106-7 pmid: 31212139 |
[35] |
López-Ráez JA, Charnikhova T, Gómez-Roldán V, et al. Tomato strigolactones are derived from carotenoids and their biosynjournal is promoted by phosphate starvation[J]. New Phytol, 2008, 178(4):863-874.
doi: 10.1111/j.1469-8137.2008.02406.x pmid: 18346111 |
[36] |
Liu G, Pfeifer J, de Brito Francisco R, et al. Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphate-poor soils[J]. New Phytol, 2018, 217(2):784-798.
doi: 10.1111/nph.14847 URL |
[37] |
Bun-Ya M, Nishimura M, Harashima S, et al. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter[J]. Mol Cell Biol, 1991, 11(6):3229-3238.
doi: 10.1128/mcb.11.6.3229-3238.1991 pmid: 2038328 |
[38] | Becquer A, Trap J, Irshad U, et al. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association[J]. Front Plant Sci, 2014, 5:548. |
[39] |
Lindsay PL, Williams BN, MacLean A, et al. A phosphate-dependent requirement for transcription factors IPD3 and IPD3L during arbuscular mycorrhizal symbiosis in Medicago truncatula[J]. Mol Plant Microbe Interact, 2019, 32(10):1277-1290.
doi: 10.1094/MPMI-01-19-0006-R URL |
[40] |
Lu MY, Cheng ZY, Zhang XM, et al. Spatial divergence of PHR-PHT1 modules maintains phosphorus homeostasis in soybean nodules[J]. Plant Physiol, 2020, 184(1):236-250.
doi: 10.1104/pp.19.01209 URL |
[41] |
Tsikou D, Yan Z, Holt DB, et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA[J]. Science, 2018, 362(6411):233-236.
doi: 10.1126/science.aat6907 URL |
[42] | Oldroyd GE, Leyser O. A plant’s diet, surviving in a variable nutrient environment[J]. Science, 2020, 368(6486) |
[43] |
Ding Y, Wang ZG, Mo SR, et al. Mechanism of low phosphorus inducing the main root lengthening of rice[J]. J Plant Growth Regul, 2021, 40(3):1032-1043.
doi: 10.1007/s00344-020-10161-w URL |
[44] |
Fang Zhu X, Sheng Zhao X, Wu Q, et al. Abscisic acid is involved in root cell wall phosphorus remobilization independent of nitric oxide and ethylene in rice(Oryza sativa)[J]. Ann Bot, 2018, 121(7):1361-1368.
doi: 10.1093/aob/mcy034 URL |
[45] |
Zhang Y, Zhou Y, Chen S, et al. Gibberellins play dual roles in response to phosphate starvation of tomato seedlings, negatively in shoots but positively in roots[J]. J Plant Physiol, 2019, 234/235:145-153.
doi: 10.1016/j.jplph.2019.02.007 URL |
[46] |
Silva-Navas J, Conesa CM, Saez A, et al. Role of Cis-Zeatin in root responses to phosphate starvation[J]. New Phytol, 2019, 224(1):242-257.
doi: 10.1111/nph.16020 pmid: 31230346 |
[47] | Zhu XF, Zhu CQ, Wang C, et al. Nitric oxide Acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice[J]. J Exp Bot, 2017, 68(3):753-760. |
[48] |
Puga MI, Rojas-Triana M, de Lorenzo L, et al. Novel signals in the regulation of Pi starvation responses in plants:facts and promises[J]. Curr Opin Plant Biol, 2017, 39:40-49.
doi: 10.1016/j.pbi.2017.05.007 URL |
[49] |
Wild R, Gerasimaite R, Jung JY, et al. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains[J]. Science, 2016, 352(6288):986-990.
doi: 10.1126/science.aad9858 URL |
[50] |
Ried MK, Wild R, Zhu J, et al. Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis[J]. Nat Commun, 2021, 12(1):384.
doi: 10.1038/s41467-020-20681-4 URL |
[51] |
Duan K, Yi KK, Dang L, et al. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation[J]. Plant J, 2008, 54(6):965-975.
doi: 10.1111/j.1365-313X.2008.03460.x URL |
[52] |
He Y, Zhang X, Li L, et al. SPX4 interacts with both PHR1 and PAP1 to regulate critical steps in phosphorus-status-dependent anthocyanin biosynjournal[J]. New Phytol, 2021, 230(1):205-217.
doi: 10.1111/nph.v230.1 URL |
[53] |
Lv Q, Zhong Y, Wang Y, et al. SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice[J]. Plant Cell, 2014, 26(4):1586-1597.
doi: 10.1105/tpc.114.123208 URL |
[54] |
Ruan W, Guo M, Wang X, et al. Two RING-finger ubiquitin E3 ligases regulate the degradation of SPX4, an internal phosphate sensor, for phosphate homeostasis and signaling in rice[J]. Mol Plant, 2019, 12(8):1060-1074.
doi: 10.1016/j.molp.2019.04.003 URL |
[55] |
Huang KL, Ma GJ, Zhang ML, et al. The ARF7 and ARF19 transcription factors positively regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis roots[J]. Plant Physiol, 2018, 178(1):413-427.
doi: 10.1104/pp.17.01713 URL |
[56] |
Lin WY, Lin YY, Chiang SF, et al. Evolution of microRNA827 targeting in the plant kingdom[J]. New Phytol, 2018, 217(4):1712-1725.
doi: 10.1111/nph.14938 URL |
[57] |
Park BS, Seo JS, Chua NH. NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis[J]. Plant Cell, 2014, 26(1):454-464.
doi: 10.1105/tpc.113.120311 URL |
[58] |
Yue W, Ying Y, Wang C, et al. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters[J]. Plant J, 2017, 90(6):1040-1051.
doi: 10.1111/tpj.2017.90.issue-6 URL |
[59] |
Liu TY, Huang TK, Yang SY, et al. Identification of plant vacuolar transporters mediating phosphate storage[J]. Nat Commun, 2016, 7:11095.
doi: 10.1038/ncomms11095 URL |
[60] | 刘潮, 褚洪龙, 韩利红, 等. 植物miR399家族分子特征及靶基因功能分析[J]. 华北农学报, 2019, 34(2):1-7. |
Liu C, Chu HL, Han LH, et al. Molecular characterization and target gene prediction of plant miR399 family[J]. Acta Agric Boreali Sin, 2019, 34(2):1-7. | |
[61] |
Zhang J, Gu M, Liang R, et al. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions[J]. New Phytol, 2021, 229(3):1598-1614.
doi: 10.1111/nph.v229.3 URL |
[62] |
Ramaiah M, Jain A, Raghothama KG. Ethylene Response Factor070 regulates root development and phosphate starvation-mediated responses[J]. Plant Physiol, 2014, 164(3):1484-1498.
doi: 10.1104/pp.113.231183 URL |
[63] |
Chen ZH, Nimmo GA, Jenkins GI, et al. BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis[J]. Biochem J, 2007, 405(1):191-198.
doi: 10.1042/BJ20070102 URL |
[64] |
Devaiah BN, Nagarajan VK, Raghothama KG. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6[J]. Plant Physiol, 2007, 145(1):147-159.
doi: 10.1104/pp.107.101691 URL |
[65] |
Hamburger D, Rezzonico E, MacDonald-Comber Petétot J, et al. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem[J]. Plant Cell, 2002, 14(4):889-902.
pmid: 11971143 |
[66] | Wang Y, Ribot C, Rezzonico E, et al. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis[J]. Plant Physiol, 2004, 135(1):400-411. |
[67] |
Ye Q, Wang H, Su T, et al. The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-pi stress in Arabidopsis[J]. Plant Cell, 2018, 30(5):1062-1076.
doi: 10.1105/tpc.17.00845 URL |
[68] |
Chen YF, Li LQ, Xu Q, et al. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis[J]. Plant Cell, 2009, 21(11):3554-3566.
doi: 10.1105/tpc.108.064980 URL |
[69] |
Su T, Xu Q, Zhang FC, et al. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis[J]. Plant Physiol, 2015, 167(4):1579-1591.
doi: 10.1104/pp.114.253799 URL |
[70] |
Wang Y, Secco D, Poirier Y. Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens[J]. Plant Physiol, 2008, 146(2):646-656.
doi: 10.1104/pp.107.108548 URL |
[71] |
Ding GD, Lei GJ, Yamaji N, et al. Vascular cambium-localized AtSPDT mediates xylem-to-phloem transfer of phosphorus for its preferential distribution in Arabidopsis[J]. Mol Plant, 2020, 13(1):99-111.
doi: 10.1016/j.molp.2019.10.002 URL |
[72] |
Yamaji N, Takemoto Y, Miyaji T, et al. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node[J]. Nature, 2017, 541(7635):92-95.
doi: 10.1038/nature20610 URL |
[73] |
Thieme CJ, Rojas-Triana M, Stecyk E, et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues[J]. Nat Plants, 2015, 1(4):15025.
doi: 10.1038/nplants.2015.25 URL |
[74] |
Zhong Y, Pan X, Wang R, et al. ZmCCD10a encodes a distinct type of carotenoid cleavage dioxygenase and enhances plant tolerance to low phosphate[J]. Plant Physiol, 2020, 184(1):374-392.
doi: 10.1104/pp.20.00378 URL |
[75] |
Luan M, Zhao F, Han X, et al. Vacuolar phosphate transporters contribute to systemic phosphate homeostasis vital for reproductive development in Arabidopsis[J]. Plant Physiol, 2019, 179(2):640-655.
doi: 10.1104/pp.18.01424 URL |
[76] | Wang C, Yue W, Ying Y, et al. Rice SPX-major facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice[J]. Plant Physiol, 2015, 169(4):2822-2831. |
[77] |
Xu L, Zhao H, Wan R, et al. Identification of vacuolar phosphate efflux transporters in land plants[J]. Nat Plants, 2019, 5(1):84-94.
doi: 10.1038/s41477-018-0334-3 URL |
[78] |
Gao W, Lu L, Qiu W, et al. OsPAP26 encodes a major purple acid phosphatase and regulates phosphate remobilization in rice[J]. Plant Cell Physiol, 2017, 58(5):885-892.
doi: 10.1093/pcp/pcx041 URL |
[79] |
Medici A, Szponarski W, Dangeville P, et al. Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants[J]. Plant Cell, 2019, 31(5):1171-1184.
doi: 10.1105/tpc.18.00656 |
[80] |
Liu W, Sun Q, Wang K, et al. Nitrogen Limitation Adaptation(NLA)is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1. 7 in Arabidopsis[J]. New Phytol, 2017, 214(2):734-744.
doi: 10.1111/nph.2017.214.issue-2 URL |
[81] |
Zhang ZH, Li Z, Wang W, et al. Modulation of nitrate-induced phosphate response by the MYB transcription factor RLI1/HINGE1 in the nucleus[J]. Mol Plant, 2021, 14(3):517-529.
doi: 10.1016/j.molp.2020.12.005 URL |
[82] |
Hu B, Jiang Z, Wang W, et al. Nitrate-NRT1. 1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nat Plants, 2019, 5(4):401-413.
doi: 10.1038/s41477-019-0384-1 URL |
[83] |
Wang X, Wang HF, Chen Y, et al. The transcription factor NIGT1. 2 modulates both phosphate uptake and nitrate influx during phosphate starvation in Arabidopsis and maize[J]. Plant Cell, 2020, 32(11):3519-3534.
doi: 10.1105/tpc.20.00361 URL |
[84] |
Meng Q, Zhang W, Hu X, et al. Two ADP-glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice[J]. Plant J, 2020, 104(5):1269-1284.
doi: 10.1111/tpj.v104.5 URL |
[85] |
Ródenas R, Martínez V, Nieves-Cordones M, et al. High external K+ concentrations impair pi nutrition, induce the phosphate starvation response, and reduce arsenic toxicity in Arabidopsis plants[J]. Int J Mol Sci, 2019, 20(9):2237.
doi: 10.3390/ijms20092237 URL |
[86] |
Meyer G, Bell MJ, Doolette CL, et al. Plant-available phosphorus in highly concentrated fertilizer bands:effects of soil type, phosphorus form, and coapplied potassium[J]. J Agric Food Chem, 2020, 68(29):7571-7580.
doi: 10.1021/acs.jafc.0c01287 URL |
[87] | 徐壮, 王婉瑕, 徐磊, 等. 水稻磷素吸收与转运分子机制研究进展[J]. 植物营养与肥料学报, 2018, 24(5):1378-1385. |
Xu Z, Wang WX, Xu L, et al. Research progress in molecular mechanism of rice phosphorus uptake and translocation[J]. J Plant Nutr Fertil, 2018, 24(5):1378-1385. | |
[88] | 孙传范, 肖凯, 韩胜芳, 等. 植物吸收和转运磷素的分子机理研究进展[J]. 中国农业科技导报, 2011, 13(2):17-24. |
Sun CF, Xiao K, Han SF, et al. Advances in the molecular mechanism of phosphorus uptake and transportation in plants[J]. J Agric Sci Technol, 2011, 13(2):17-24. |
[1] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[2] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[5] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[6] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[7] | 郭怡婷, 赵文菊, 任延靖, 赵孟良. 菊芋NAC转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(6): 217-232. |
[8] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[9] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[10] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[11] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[12] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[13] | 刘铖霞, 孙宗艳, 罗云波, 朱鸿亮, 曲桂芹. bHLH转录因子的磷酸化调控植物生理功能的研究进展[J]. 生物技术通报, 2023, 39(3): 26-34. |
[14] | 赵孟良, 郭怡婷, 任延靖. 菊芋WRKY转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(2): 116-125. |
[15] | 吕宇婧, 吴丹丹, 孔春艳, 杨宇, 龚明. 小桐子XTH基因家族和与之互作的miRNAs的全基因组鉴定及其在低温适应中的作用[J]. 生物技术通报, 2023, 39(2): 147-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||