生物技术通报 ›› 2022, Vol. 38 ›› Issue (2): 218-226.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0565
收稿日期:
2021-04-27
出版日期:
2022-02-26
发布日期:
2022-03-09
作者简介:
梁星星,女,硕士,研究方向:功能核酸药物传递;E-mail: 基金资助:
LIANG Xing-xing1,2(), WANG Jia1, XU Wen-tao1()
Received:
2021-04-27
Published:
2022-02-26
Online:
2022-03-09
摘要:
核苷(酸)类似物是一类抗病毒前药,其进入人体细胞后经过逐步磷酸化生成核苷三磷酸类似物发挥抗代谢药作用,主要通过抑制病毒复制和促进侵染细胞凋亡,达到疾病治疗效果。其中,核苷类似物在细胞内经激酶活化的代谢转化过程通常是不充分的,导致最后生成的核苷三磷酸类似物浓度较低,降低了作用效果。因此,通过直接制备核苷酸类似物作为抗病毒前药,在磷酸基上修饰亲脂的、可裂解的基团,使其稳定性提高,细胞吸收摄取能力增强,可避开细胞内的磷酸化限速步骤,从而有效提高最终的活性核苷三磷酸浓度,发挥更好的抗病毒作用。总结了核苷酸类似物的发展过程,列举分析了不同类型核苷酸类似物的合成和修饰手段,以期为进一步发展高效安全的抗病毒核苷酸类似物提供良好借鉴。
梁星星, 王佳, 许文涛. 抗病毒核苷酸类似物磷酸化修饰研究进展[J]. 生物技术通报, 2022, 38(2): 218-226.
LIANG Xing-xing, WANG Jia, XU Wen-tao. Research Progress in Phosphorylation Modification of Antiviral Nucleotide Analogs[J]. Biotechnology Bulletin, 2022, 38(2): 218-226.
[1] |
Jordheim LP, Durantel D, Zoulim F, et al. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases[J]. Nat Rev Drug Discov, 2013, 12(6):447-464.
doi: 10.1038/nrd4010 pmid: 23722347 |
[2] |
Khandazhinskaya A, Matyugina E, Solyev P, et al. Investigation of 5'-norcarbocyclic nucleoside analogues as antiprotozoal and antibacterial agents[J]. Molecules, 2019, 24(19):3433.
doi: 10.3390/molecules24193433 URL |
[3] | Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, et al. A review:Mechanism of action of antiviral drugs[J]. Int J Immunopathol Pharmacol, 2021, 35:20587384211002621. |
[4] | Good SS, Westover J, Jung KH, et al. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19[J]. Antimicrob Agents Chemother, 2021, 65(4):e02479-20. |
[5] |
Cano-Soldado P, Pastor-Anglada M. Transporters that translocate nucleosides and structural similar drugs:structural requirements for substrate recognition[J]. Med Res Rev, 2012, 32(2):428-457.
doi: 10.1002/med.20221 pmid: 21287570 |
[6] |
Ferey J, Da Silva D, Colas C, et al. Monitoring of phosphorylation using immobilized kinases by on-line enzyme bioreactors hyphenated with High-Resolution Mass Spectrometry[J]. Talanta, 2019, 205:120120.
doi: 10.1016/j.talanta.2019.120120 URL |
[7] |
De Clercq E. Strategies in the design of antiviral drugs[J]. Nat Rev Drug Discov, 2002, 1(1):13-25.
pmid: 12119605 |
[8] |
Balzarini J. Metabolism and mechanism of antiretroviral action of purine and pyrimidine derivatives[J]. Pharm World Sci, 1994, 16(2):113-126.
doi: 10.1007/BF01880662 pmid: 8032337 |
[9] |
Gollnest T, Dinis de Oliveira T, Rath A, et al. Membrane-permeable triphosphate prodrugs of nucleoside analogues[J]. Angew Chem Int Ed Engl, 2016, 55(17):5255-5258.
doi: 10.1002/anie.201511808 URL |
[10] | Zhang YX, Gao YK, Wen XJ, et al. Current prodrug strategies for improving oral absorption of nucleoside analogues[J]. Asian J Pharm Sci, 2014, 9(2):65-74. |
[11] |
De Clercq E. Clinical potential of the acyclic nucleoside phosphonates cidofovir, adefovir, and tenofovir in treatment of DNA virus and retrovirus infections[J]. Clin Microbiol Rev, 2003, 16(4):569-596.
doi: 10.1128/CMR.16.4.569-596.2003 pmid: 14557287 |
[12] |
Meier C. Cyclo sal phosphates as chemical Trojan horses for intracellular nucleotide and glycosylmonophosphate delivery—chemistry meets biology[J]. Eur J Org Chem, 2006, 2006(5):1081-1102.
doi: 10.1002/ejoc.v2006:5 URL |
[13] |
Siegel D, Hui HC, Doerffler E, et al. Discovery and synjournal of a phosphoramidate prodrug of a pyrrolo[2, 1-f][triazin-4-amino]adenine C-nucleoside(GS-5734)for the treatment of Ebola and emerging viruses[J]. J Med Chem, 2017, 60(5):1648-1661.
doi: 10.1021/acs.jmedchem.6b01594 URL |
[14] |
Li GD, Yue TT, Zhang P, et al. Drug discovery of nucleos(t)ide antiviral agents:dedicated to prof. dr. Erik de clercq on occasion of his 80th birthday[J]. Molecules, 2021, 26(4):923.
doi: 10.3390/molecules26040923 URL |
[15] |
Pradere U, Garnier-Amblard EC, Coats SJ, et al. Synjournal of nucleoside phosphate and phosphonate prodrugs[J]. Chem Rev, 2014, 114(18):9154-9218.
doi: 10.1021/cr5002035 pmid: 25144792 |
[16] |
Pertusati F, Pileggi E, Richards J, et al. Drug repurposing:phosphate prodrugs of anticancer and antiviral FDA-approved nucleosides as novel antimicrobials[J]. J Antimicrob Chemother, 2020, 75(10):2864-2878.
doi: 10.1093/jac/dkaa268 pmid: 32688391 |
[17] |
Farquhar D, Srivastva DN, Kattesch NJ, et al. Biologically reversible phosphate-protective groups[J]. J Pharm Sci, 1983, 72(3):324-325.
doi: 10.1002/jps.2600720332 URL |
[18] |
Farquhar D, Khan S, Srivastva DN, et al. Synjournal and antitumor evaluation of Bis[(pivaloyloxy)methyl]2'-Deoxy-5-fluorouridine 5'-Monophosphate(FdUMP):a strategy To introduce nucleotides into cells[J]. J Med Chem, 1994, 37(23):3902-3909.
pmid: 7966151 |
[19] |
Hamada M, Roy V, McBrayer TR, et al. Synjournal and broad spectrum antiviral evaluation of bis(POM)prodrugs of novel acyclic nucleosides[J]. Eur J Med Chem, 2013, 67:398-408.
doi: 10.1016/j.ejmech.2013.06.053 URL |
[20] |
Tera M, Glasauer SMK, Luedtke NW. In vivo incorporation of azide groups into DNA by using membrane-permeable nucleotide triesters[J]. Chembiochem, 2018, 19(18):1939-1943.
doi: 10.1002/cbic.v19.18 URL |
[21] | Peyrottes S, Egron D, Lefebvre I, et al. SATE pronucleotide approaches:an overview[J]. Mini Rev Med Chem, 2004, 4(4):395-408. |
[22] | Gouy MH, Jordheim LP, Lefebvre I, et al. Special feature of mixed phosphotriester derivatives of cytarabine[J]. Bioorg Med Chem, 2009, 17(17):6340-6347. |
[23] |
Milisavljevic N, Konkolová E, Kozák J, et al. Antiviral activity of 7-substituted 7-deazapurine ribonucleosides, monophosphate prodrugs, and triphoshates against emerging RNA viruses[J]. ACS Infect Dis, 2021, 7(2):471-478.
doi: 10.1021/acsinfecdis.0c00829 URL |
[24] |
Meier C. cycloSal-pronucleotides design of chemical Trojan horses[J]. Mini Rev Med Chem, 2002, 2(3):219-234.
doi: 10.2174/1389557023406205 URL |
[25] |
Kamata M, Takeuchi T, Hayashi E, et al. Synjournal of nucleotide analogues, EFdA, EdA and EdAP, and the effect of EdAP on hepatitis B virus replication[J]. Biosci Biotechnol Biochem, 2020, 84(2):217-227.
doi: 10.1080/09168451.2019.1673696 URL |
[26] |
Rios Morales EH, Balzarini J, Meier C. Stereoselective synjournal and antiviral activity of methyl-substituted cycloSal-pronucleotides[J]. J Med Chem, 2012, 55(16):7245-7252.
doi: 10.1021/jm3008085 pmid: 22827702 |
[27] |
Mehellou Y, Balzarini J, McGuigan C. Aryloxy phosphoramidate triesters:a technology for delivering monophosphorylated nucleosides and sugars into cells[J]. ChemMedChem, 2009, 4(11):1779-1791.
doi: 10.1002/cmdc.200900289 pmid: 19760699 |
[28] |
Bessières M, Hervin V, Roy V, et al. Highly convergent synjournal and antiviral activity of(E)-but-2-enyl nucleoside phosphonoamidates[J]. Eur J Med Chem, 2018, 146:678-686.
doi: S0223-5234(18)30108-9 pmid: 29407990 |
[29] |
Dentmon ZW, Kaiser TM, Liotta DC. Synjournal and antiviral activity of a series of 2'-C-methyl-4'-thionucleoside monophosphate prodrugs[J]. Molecules, 2020, 25(21):5165.
doi: 10.3390/molecules25215165 URL |
[30] |
Pruijssers AJ, George AS, Schäfer A, et al. Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice[J]. Cell Rep, 2020, 32(3):107940.
doi: S2211-1247(20)30921-9 pmid: 32668216 |
[31] |
Warnecke S, Meier C. Synjournal of nucleoside Di- and triphosphates and dinucleoside polyphosphates with cycloSal-nucleotides[J]. J Org Chem, 2009, 74(8):3024-3030.
doi: 10.1021/jo802348h pmid: 19320463 |
[32] | Ju J, Li X, Kumar S, et al. Nucleotide analogues as inhibitors of SARS-CoV Polymerase[J]. Pharmacol Res Perspect, 2020, 8(6):e00674. |
[33] |
Wang G, Dyatkina N, Prhavc M, et al. Synjournal and anti-HCV activities of 4'-fluoro-2'-substituted uridine triphosphates and nucleotide prodrugs:discovery of 4'-fluoro-2'- C-methyluridine 5'-phosphoramidate prodrug(AL-335)for the treatment of hepatitis C infection[J]. J Med Chem, 2019, 62(9):4555-4570.
doi: 10.1021/acs.jmedchem.9b00143 URL |
[34] |
Groaz E, de Jonghe S. Overview of biologically active nucleoside phosphonates[J]. Front Chem, 2021, 8:616863.
doi: 10.3389/fchem.2020.616863 URL |
[35] |
Furman PA, Fyfe JA, St Clair MH, et al. Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase[J]. PNAS, 1986, 83(21):8333-8337.
pmid: 2430286 |
[36] |
Weinschenk L, Gollnest T, Schols D, et al. Bis(benzoyloxybenzyl)-DiPPro nucleoside diphosphates of anti-HIV active nucleoside analogues[J]. ChemMedChem, 2015, 10(5):891-900.
doi: 10.1002/cmdc.201500063 pmid: 25847660 |
[37] |
Hostetler KY, Stuhmiller LM, Lenting HB, et al. Synjournal and antiretroviral activity of phospholipid analogs of azidothymidine and other antiviral nucleosides[J]. J Biol Chem, 1990, 265(11):6112-6117.
pmid: 2318849 |
[38] | van Wijk GMT, Hostetler KY, van den Bosch H. Lipid conjugates of antiretroviral agents:Release of antiretroviral nucleoside monophosphates by a nucleoside diphosphate diglyceride hydrolase activity from rat liver mitochondria[J]. Biochim et Biophys Acta BBA Lipids Lipid Metab, 1991, 1084(3):307-310. |
[39] |
Kreimeyer A, Ughetto-Monfrin J, Namane A, et al. Synjournal of acylphosphates of purine ribonucleosides[J]. Tetrahedron Lett, 1996, 37(48):8739-8742.
doi: 10.1016/S0040-4039(96)02016-3 URL |
[40] |
Bonnaffé D, Dupraz B, Ughetto-Monfrin J, et al. Potential lipophilic nucleotide prodrugs:synjournal, hydrolysis, and antiretroviral activity of AZT and d4T acyl nucleotides[J]. J Org Chem, 1996, 61(3):895-902.
doi: 10.1021/jo951354p URL |
[41] |
Meier C, Jessen HJ, Schulz T, et al. Rational development of nucleoside diphosphate prodrugs:DiPPro-compounds[J]. Curr Med Chem, 2015, 22(34):3933-3950.
pmid: 26303175 |
[42] |
Pertenbreiter F, Balzarini J, Meier C. Nucleoside mono- and diphosphate prodrugs of 2', 3'-dideoxyuridine and 2', 3'-dideoxy-2', 3'-didehydrouridine[J]. ChemMedChem, 2015, 10(1):94-106.
doi: 10.1002/cmdc.201402295 pmid: 25209965 |
[43] |
Weinschenk L, Schols D, Balzarini J, et al. Nucleoside diphosphate prodrugs:nonsymmetric DiPPro-nucleotides[J]. J Med Chem, 2015, 58(15):6114-6130.
doi: 10.1021/acs.jmedchem.5b00737 pmid: 26125628 |
[44] |
Huchting J, Vanderlinden E, Winkler M, et al. Prodrugs of the phosphoribosylated forms of hydroxypyrazinecarboxamide pseudobase T-705 and its de-fluoro analogue T-1105 as potent influenza virus inhibitors[J]. J Med Chem, 2018, 61(14):6193-6210.
doi: 10.1021/acs.jmedchem.8b00617 pmid: 29906392 |
[45] |
Pahnke K, Meier C. Synjournal of a bioreversibly masked lipophilic adenosine diphosphate ribose derivative[J]. Chembiochem, 2017, 18(16):1616-1626.
doi: 10.1002/cbic.201700232 URL |
[46] |
Gollnest T, de Oliveira TD, Schols D, et al. Lipophilic prodrugs of nucleoside triphosphates as biochemical probes and potential antivirals[J]. Nat Commun, 2015, 6:8716.
doi: 10.1038/ncomms9716 pmid: 26503889 |
[47] |
Meier C. Nucleoside diphosphate and triphosphate prodrugs - An unsolvable task?[J]. Antivir Chem Chemother, 2017, 25(3):69-82.
doi: 10.1177/2040206617738656 URL |
[48] |
Bonnaffé D, Dupraz B, Ughetto-Monfrin J, et al. Synjournal of acyl pyrophosphates. Application to the synjournal of nucleotide lipophilic prodrugs[J]. Tetrahedron Lett, 1995, 36(4):531-534.
doi: 10.1016/0040-4039(94)02322-3 URL |
[49] |
Kreimeyer A, Ughetto-Monfrin J, Namane A, et al. Synjournal of acylphosphates of purine ribonucleosides[J]. Tetrahedron Lett, 1996, 37(48):8739-8742.
doi: 10.1016/S0040-4039(96)02016-3 URL |
[50] |
Camarasa MJ. Prodrugs of nucleoside triphosphates as a sound and challenging approach:a pioneering work that opens a new era in the direct intracellular delivery of nucleoside triphosphates[J]. ChemMedChem, 2018, 13(18):1885-1889.
doi: 10.1002/cmdc.201800454 URL |
[51] |
Weising S, Sterrenberg V, Schols D, et al. Synjournal and antiviral evaluation of TriPPPro-AbacavirTP, TriPPPro-CarbovirTP, and their 1', 2'-Cis-disubstituted analogues[J]. ChemMedChem, 2018, 13(17):1771-1778.
doi: 10.1002/cmdc.201800361 pmid: 29943432 |
[52] |
Jia X, Schols D, Meier C. Anti-HIV-active nucleoside triphosphate prodrugs[J]. J Med Chem, 2020, 63(11):6003-6027.
doi: 10.1021/acs.jmedchem.0c00271 URL |
[53] |
Zhao CL, Jia X, Schols D, et al. Γ-non-symmetrically dimasked tri PPP ro prodrugs as potential antiviral agents against HIV[J]. ChemMedChem, 2021, 16(3):499-512.
doi: 10.1002/cmdc.v16.3 URL |
[54] |
Zhao CL, Weber S, Schols D, et al. Prodrugs of γ-alkyl-modified nucleoside triphosphates:improved inhibition of HIV reverse transcriptase[J]. Angew Chem Int Ed, 2020, 59(49):22063-22071.
doi: 10.1002/anie.v59.49 URL |
[55] |
Nack T, Dinis de Oliveira T, Weber S, et al. Γ-ketobenzyl-modified nucleoside triphosphate prodrugs as potential antivirals[J]. J Med Chem, 2020, 63(22):13745-13761.
doi: 10.1021/acs.jmedchem.0c01293 URL |
[1] | 严涛, 陈珂可, 杨恒飞, 朱建国, 夏九学, 方曙光. 益生菌菌粉贮存活性影响因素研究[J]. 生物技术通报, 2023, 39(4): 296-303. |
[2] | 宋海娜, 吴心桐, 杨鲁豫, 耿喜宁, 张华敏, 宋小龙. 葱鳞葡萄孢菌诱导下韭菜RT-qPCR内参基因的筛选和验证[J]. 生物技术通报, 2023, 39(3): 101-115. |
[3] | 李圣彦, 李香银, 李鹏程, 张明俊, 张杰, 郎志宏. 转基因玉米2HVB5的性状鉴定及遗传稳定性分析[J]. 生物技术通报, 2023, 39(1): 21-30. |
[4] | 王子琰, 王建, 张伦, 桂水清, 卢雪梅. 家蝇抗菌肽MDC对鼠伤寒沙门氏菌的抑菌稳定性研究[J]. 生物技术通报, 2022, 38(3): 149-156. |
[5] | 张晨, 张佟佟, 刘海萍. 高活性和高热稳定性乙烯合成酶的筛选和鉴定[J]. 生物技术通报, 2022, 38(11): 269-276. |
[6] | 江迪, 徐春城. 发酵TMR应用及其微生物种群演替规律研究进展[J]. 生物技术通报, 2021, 37(9): 31-38. |
[7] | 高振峰, 赵佳. 微白黄链霉菌G-1发酵液抗真菌特性研究和发酵条件优化[J]. 生物技术通报, 2021, 37(3): 53-64. |
[8] | 陈春, 宿玲恰, 夏伟, 吴敬. 定向进化提高来源于Arthrobacter ramosus 的MTHase的热稳定性[J]. 生物技术通报, 2021, 37(3): 84-91. |
[9] | 郑叶子, 王丹, 潘咪, 王艳玲, 安丽君. 拟南芥GLABROUS 1两个新等位突变体的筛选和鉴定[J]. 生物技术通报, 2021, 37(2): 15-23. |
[10] | 余琴, 马现永, 邓盾, 王永飞. 海氏肠球菌IDO5对猪粪废水中吲哚降解条件优化及降解途径分析[J]. 生物技术通报, 2021, 37(12): 113-123. |
[11] | 田庚, 高伟强, 陈晓波, 张春晓. 地衣芽孢杆菌KD-1β-甘露聚糖酶定点突变提高酶活性及稳定性[J]. 生物技术通报, 2021, 37(10): 100-109. |
[12] | 吴娇, 余桂珍, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合超嗜热菌Pyrococcus furiosus红素氧还蛋白可提高靶蛋白的热稳定性[J]. 生物技术通报, 2021, 37(10): 110-119. |
[13] | 李晓燕, 李驰宇, 于峰, 廖红东. 拟南芥EBP1蛋白与RNA相互作用的初步研究[J]. 生物技术通报, 2020, 36(6): 35-45. |
[14] | 白春丽, 叶倩, 姬阿美, 刘旭平, 张旭, 刘志亮, 朱明龙, 赵亮, 谭文松. 生产禽流感病毒的悬浮MDCK细胞稳定性的研究[J]. 生物技术通报, 2020, 36(10): 72-79. |
[15] | 孙熙麟, 蒋振彦, 刘志屹, 戴璐, 孙非, 黄伟. 氨基酸定点突变提高灵芝蛋白LZ-8热稳定性的研究[J]. 生物技术通报, 2020, 36(1): 23-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||