生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 53-64.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0419
收稿日期:
2020-04-13
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
高振峰,博士,助理研究员,研究方向:植物病害生物防治;E-mail:基金资助:
Received:
2020-04-13
Published:
2021-03-26
Online:
2021-04-02
摘要:
为明确微白黄链霉菌(Streptomyces albidoflavus)G-1发酵液抗真菌特性和较优发酵条件,本研究采用平板对峙法、生长速率法、单因素试验、RDA分析和响应面CCD设计分别对其抗真菌特性、产抗菌物质关键限制因子和发酵条件较优组合进行了探究。结果表明:S. albidoflavus G-1发酵液对马铃薯早疫病菌、西瓜枯萎病菌、小麦赤霉病菌、辣椒枯萎病菌、黄瓜疫霉病菌和桃褐腐病菌具有较好抑菌效果,抑菌率均可达70%;发酵液在≤80℃、紫外照射24 h、pH 3-13和稀释100倍条件下仍可保持70%以上抑菌率;产抗菌物质关键限制因子为初始pH值、温度、麦芽糖和马铃薯;较优发酵条件为8%麦芽糖、马铃薯16.5%、初始pH 6.5、温度30℃、转速160 r/min、发酵5 d,且在该条件下可使抑菌率提高14.46%。说明菌株G-1发酵液具有良好的抑真菌稳定性,且优化后的发酵条件可使菌株G-1在较低成本和较短时间内产生大量抗菌物质,研究结果为其后期田间应用和规模化发酵奠定了理论基础。
高振峰, 赵佳. 微白黄链霉菌G-1发酵液抗真菌特性研究和发酵条件优化[J]. 生物技术通报, 2021, 37(3): 53-64.
GAO Zhen-feng, ZHAO Jia. Study on Antifungal Properties of Fermentation Broth from Streptomyces albidoflavus G-1 and Optimization of Its Fermentation Condition[J]. Biotechnology Bulletin, 2021, 37(3): 53-64.
因素 | 水 平 | |||||
---|---|---|---|---|---|---|
-α | -1 | 0 | 1 | α | ||
A /初始pH值 | 4.5 | 5.5 | 6.5 | 7.5 | 8.5 | |
B/温度(℃) | 20 | 25 | 30 | 35 | 40 | |
C/麦芽糖(g/L) | 4 | 6 | 8 | 10 | 12 | |
D/马铃薯(g/L) | 95 | 130 | 165 | 200 | 235 |
表1 响应面CCD设计因素和水平编码表
因素 | 水 平 | |||||
---|---|---|---|---|---|---|
-α | -1 | 0 | 1 | α | ||
A /初始pH值 | 4.5 | 5.5 | 6.5 | 7.5 | 8.5 | |
B/温度(℃) | 20 | 25 | 30 | 35 | 40 | |
C/麦芽糖(g/L) | 4 | 6 | 8 | 10 | 12 | |
D/马铃薯(g/L) | 95 | 130 | 165 | 200 | 235 |
植物病原真菌 | 菌株G-1抑菌带/ mm | 菌株G-1发酵液抑菌率/% | ||
---|---|---|---|---|
对照菌落直径/mm | 处理菌落直径/ mm | 抑菌率/% | ||
马铃薯早疫病菌 | 14.92±1.62a | 59.44±2.96 | 18.11±2.47 | 75.86±4.77b |
西瓜枯萎病菌 | 7.83±1.11c | 85.33±0.71 | 26.67±1.58 | 73.03±1.90c |
小麦赤霉病菌 | 14.08±1.24ab | 85.56±0.53 | 24.78±1.48 | 75.45±1.86b |
辣椒枯萎病菌 | 13.75±0.97b | 82.78±0.97 | 28.44±0.88 | 69.86±0.90d |
棉花立枯病菌 | 4.33±1.07d | 85.22±0.67 | 59.00±3.46 | 32.68±4.44g |
桃褐腐病菌 | 14.42±1.88a | 82.22±1.92 | 21.22±1.39 | 78.96±2.15a |
菜豆菌核病菌 | 3.42±1.08e | 85.11±0.78 | 52.56±3.21 | 40.62±4.20f |
菜豆炭疽病菌 | 7.58±1.24c | 66.00±2.55 | 35.11±3.30 | 50.58±5.63e |
番茄灰霉病菌 | 2.92±0.90f | 85.22±0.67 | 72.89±2.62 | 15.36±3.52h |
黄瓜疫霉菌 | 14.17±1.27ab | 67.33±3.00 | 20.11±2.76 | 75.66±4.83b |
表2 S. albidoflavus G-1及其发酵液对5种不同植物病原真菌的离体抑菌效果
植物病原真菌 | 菌株G-1抑菌带/ mm | 菌株G-1发酵液抑菌率/% | ||
---|---|---|---|---|
对照菌落直径/mm | 处理菌落直径/ mm | 抑菌率/% | ||
马铃薯早疫病菌 | 14.92±1.62a | 59.44±2.96 | 18.11±2.47 | 75.86±4.77b |
西瓜枯萎病菌 | 7.83±1.11c | 85.33±0.71 | 26.67±1.58 | 73.03±1.90c |
小麦赤霉病菌 | 14.08±1.24ab | 85.56±0.53 | 24.78±1.48 | 75.45±1.86b |
辣椒枯萎病菌 | 13.75±0.97b | 82.78±0.97 | 28.44±0.88 | 69.86±0.90d |
棉花立枯病菌 | 4.33±1.07d | 85.22±0.67 | 59.00±3.46 | 32.68±4.44g |
桃褐腐病菌 | 14.42±1.88a | 82.22±1.92 | 21.22±1.39 | 78.96±2.15a |
菜豆菌核病菌 | 3.42±1.08e | 85.11±0.78 | 52.56±3.21 | 40.62±4.20f |
菜豆炭疽病菌 | 7.58±1.24c | 66.00±2.55 | 35.11±3.30 | 50.58±5.63e |
番茄灰霉病菌 | 2.92±0.90f | 85.22±0.67 | 72.89±2.62 | 15.36±3.52h |
黄瓜疫霉菌 | 14.17±1.27ab | 67.33±3.00 | 20.11±2.76 | 75.66±4.83b |
处理 | 对照菌落直径/ mm | 处理菌落直径/ mm | 抑菌率/% | |
---|---|---|---|---|
温度 /℃ | 室温 | 52.56±1.13 | 15.44±1.94 | 78.98±2.90a |
30 | 52.56±1.13 | 15.44±1.59 | 78.01±4.16a | |
40 | 52.56±1.13 | 14.56±1.13 | 78.06±3.17a | |
50 | 52.56±1.13 | 14.78±1.92 | 79.89±2.49a | |
60 | 52.56±1.13 | 15.00±2.55 | 79.46±3.91a | |
70 | 52.56±1.13 | 15.00±1.41 | 78.94±5.52a | |
80 | 52.56±1.13 | 17.22±1.39 | 78.93±3.24a | |
90 | 52.56±1.13 | 21.44±1.51 | 74.27±3.18b | |
100 | 52.56±1.13 | 15.00±1.41 | 65.38±3.50c | |
初始pH值 | 3 | 52.56±1.13 | 15.44±1.51 | 78.03±3.19a |
5 | 52.56±1.13 | 15.22±1.39 | 78.52±2.81a | |
7 | 52.56±1.13 | 15.22±0.97 | 78.52±1.79a | |
9 | 52.56±1.13 | 15.00±1.22 | 78.93±2.91a | |
11 | 52.56±1.13 | 15.11±0.78 | 78.72±1.78a | |
13 | 52.56±1.13 | 15.00±1.22 | 78.95±2.77a | |
紫外照射时间/ h | 0 | 52.56±1.13 | 15.33±1.00 | 78.25±2.29a |
4 | 52.56±1.13 | 15.11±1.90 | 78.70±4.16a | |
6 | 52.56±1.13 | 15.11±1.45 | 78.71±3.21a | |
8 | 52.56±1.13 | 15.00±0.87 | 78.96±1.93a | |
10 | 52.56±1.13 | 15.11±1.27 | 78.73±2.68a | |
12 | 52.56±1.13 | 15.00±1.32 | 78.95±2.93a | |
24 | 52.56±1.13 | 15.00±1.22 | 78.95±2.72a | |
发酵液不同稀释倍数 | 0 | 54.33±2.18 | 16.22±0.97 | 77.25±1.67a |
10 | 54.33±2.18 | 16.33±1.12 | 77.01±1.59a | |
50 | 54.33±2.18 | 17.00±1.12 | 75.66±1.98b | |
100 | 54.33±2.18 | 18.89±1.76 | 71.80±3.39c | |
200 | 54.33±2.18 | 26.33±1.58 | 56.61±4.89d | |
300 | 54.33±2.18 | 34.67±2.50 | 39.74±6.27e | |
500 | 54.33±2.18 | 46.00±2.06 | 16.65±5.41f |
表3 不同处理下S. albidoflavus G-1发酵液对马铃薯早疫病菌的抗菌稳定性
处理 | 对照菌落直径/ mm | 处理菌落直径/ mm | 抑菌率/% | |
---|---|---|---|---|
温度 /℃ | 室温 | 52.56±1.13 | 15.44±1.94 | 78.98±2.90a |
30 | 52.56±1.13 | 15.44±1.59 | 78.01±4.16a | |
40 | 52.56±1.13 | 14.56±1.13 | 78.06±3.17a | |
50 | 52.56±1.13 | 14.78±1.92 | 79.89±2.49a | |
60 | 52.56±1.13 | 15.00±2.55 | 79.46±3.91a | |
70 | 52.56±1.13 | 15.00±1.41 | 78.94±5.52a | |
80 | 52.56±1.13 | 17.22±1.39 | 78.93±3.24a | |
90 | 52.56±1.13 | 21.44±1.51 | 74.27±3.18b | |
100 | 52.56±1.13 | 15.00±1.41 | 65.38±3.50c | |
初始pH值 | 3 | 52.56±1.13 | 15.44±1.51 | 78.03±3.19a |
5 | 52.56±1.13 | 15.22±1.39 | 78.52±2.81a | |
7 | 52.56±1.13 | 15.22±0.97 | 78.52±1.79a | |
9 | 52.56±1.13 | 15.00±1.22 | 78.93±2.91a | |
11 | 52.56±1.13 | 15.11±0.78 | 78.72±1.78a | |
13 | 52.56±1.13 | 15.00±1.22 | 78.95±2.77a | |
紫外照射时间/ h | 0 | 52.56±1.13 | 15.33±1.00 | 78.25±2.29a |
4 | 52.56±1.13 | 15.11±1.90 | 78.70±4.16a | |
6 | 52.56±1.13 | 15.11±1.45 | 78.71±3.21a | |
8 | 52.56±1.13 | 15.00±0.87 | 78.96±1.93a | |
10 | 52.56±1.13 | 15.11±1.27 | 78.73±2.68a | |
12 | 52.56±1.13 | 15.00±1.32 | 78.95±2.93a | |
24 | 52.56±1.13 | 15.00±1.22 | 78.95±2.72a | |
发酵液不同稀释倍数 | 0 | 54.33±2.18 | 16.22±0.97 | 77.25±1.67a |
10 | 54.33±2.18 | 16.33±1.12 | 77.01±1.59a | |
50 | 54.33±2.18 | 17.00±1.12 | 75.66±1.98b | |
100 | 54.33±2.18 | 18.89±1.76 | 71.80±3.39c | |
200 | 54.33±2.18 | 26.33±1.58 | 56.61±4.89d | |
300 | 54.33±2.18 | 34.67±2.50 | 39.74±6.27e | |
500 | 54.33±2.18 | 46.00±2.06 | 16.65±5.41f |
试验号 | 初始pH值 | 温度/℃ | 麦芽糖 | 马铃薯 | 抑菌率% |
---|---|---|---|---|---|
1 | 5.5 | 25 | 6 | 200 | 44.61±4.50 |
2 | 7.5 | 25 | 10 | 130 | 61.73±3.24 |
3 | 6.5 | 40 | 8 | 165 | 36.82±8.34 |
4 | 5.5 | 25 | 10 | 200 | 56.07±3.14 |
5 | 6.5 | 30 | 8 | 165 | 88.49±3.45 |
6 | 5.5 | 35 | 6 | 200 | 42.12±8.23 |
7 | 6.5 | 30 | 8 | 165 | 93.79±2.89 |
8 | 5.5 | 35 | 10 | 200 | 41.17±4.30 |
9 | 6.5 | 30 | 8 | 95 | 67.67±2.72 |
10 | 8.5 | 30 | 8 | 165 | 23.87±5.20 |
11 | 4.5 | 30 | 8 | 165 | 3.37±7.43 |
12 | 7.5 | 25 | 6 | 130 | 51.58±6.86 |
13 | 6.5 | 30 | 8 | 165 | 93.38±2.64 |
14 | 7.5 | 25 | 10 | 200 | 79.12±4.16 |
15 | 5.5 | 25 | 6 | 130 | 34.27±11.47 |
16 | 6.5 | 30 | 8 | 165 | 94.26±2.79 |
17 | 5.5 | 25 | 10 | 130 | 41.35±10.37 |
18 | 7.5 | 35 | 10 | 130 | 59.95±6.46 |
19 | 6.5 | 30 | 8 | 235 | 96.19±1.46 |
20 | 7.5 | 25 | 6 | 200 | 72.91±3.56 |
21 | 7.5 | 35 | 6 | 200 | 64.34±4.58 |
22 | 6.5 | 30 | 4 | 165 | 66.80±3.37 |
23 | 5.5 | 35 | 6 | 130 | 23.14±9.59 |
24 | 6.5 | 30 | 12 | 165 | 93.79±2.48 |
25 | 6.5 | 30 | 8 | 165 | 88.61±2.56 |
26 | 5.5 | 35 | 10 | 130 | 41.81±22.32 |
27 | 6.5 | 20 | 8 | 165 | 41.47±5.65 |
28 | 6.5 | 30 | 8 | 165 | 86.18±3.64 |
29 | 7.5 | 35 | 10 | 200 | 68.89±3.78 |
30 | 7.5 | 35 | 6 | 130 | 32.35±6.34 |
优化结果 | 6.5 | 30 | 8 | 165 | 90.32±2.64 |
表4 菌株G-1发酵条件响应面CCD设计试验结果
试验号 | 初始pH值 | 温度/℃ | 麦芽糖 | 马铃薯 | 抑菌率% |
---|---|---|---|---|---|
1 | 5.5 | 25 | 6 | 200 | 44.61±4.50 |
2 | 7.5 | 25 | 10 | 130 | 61.73±3.24 |
3 | 6.5 | 40 | 8 | 165 | 36.82±8.34 |
4 | 5.5 | 25 | 10 | 200 | 56.07±3.14 |
5 | 6.5 | 30 | 8 | 165 | 88.49±3.45 |
6 | 5.5 | 35 | 6 | 200 | 42.12±8.23 |
7 | 6.5 | 30 | 8 | 165 | 93.79±2.89 |
8 | 5.5 | 35 | 10 | 200 | 41.17±4.30 |
9 | 6.5 | 30 | 8 | 95 | 67.67±2.72 |
10 | 8.5 | 30 | 8 | 165 | 23.87±5.20 |
11 | 4.5 | 30 | 8 | 165 | 3.37±7.43 |
12 | 7.5 | 25 | 6 | 130 | 51.58±6.86 |
13 | 6.5 | 30 | 8 | 165 | 93.38±2.64 |
14 | 7.5 | 25 | 10 | 200 | 79.12±4.16 |
15 | 5.5 | 25 | 6 | 130 | 34.27±11.47 |
16 | 6.5 | 30 | 8 | 165 | 94.26±2.79 |
17 | 5.5 | 25 | 10 | 130 | 41.35±10.37 |
18 | 7.5 | 35 | 10 | 130 | 59.95±6.46 |
19 | 6.5 | 30 | 8 | 235 | 96.19±1.46 |
20 | 7.5 | 25 | 6 | 200 | 72.91±3.56 |
21 | 7.5 | 35 | 6 | 200 | 64.34±4.58 |
22 | 6.5 | 30 | 4 | 165 | 66.80±3.37 |
23 | 5.5 | 35 | 6 | 130 | 23.14±9.59 |
24 | 6.5 | 30 | 12 | 165 | 93.79±2.48 |
25 | 6.5 | 30 | 8 | 165 | 88.61±2.56 |
26 | 5.5 | 35 | 10 | 130 | 41.81±22.32 |
27 | 6.5 | 20 | 8 | 165 | 41.47±5.65 |
28 | 6.5 | 30 | 8 | 165 | 86.18±3.64 |
29 | 7.5 | 35 | 10 | 200 | 68.89±3.78 |
30 | 7.5 | 35 | 6 | 130 | 32.35±6.34 |
优化结果 | 6.5 | 30 | 8 | 165 | 90.32±2.64 |
来源 | 平方和 | F值 | P值 | 显著性(P<0.05) |
---|---|---|---|---|
模型 | 18 325.23 | 42.65 | < 0.0001 | 显著 |
A | 1 791.02 | 58.36 | < 0.0001 | 显著 |
B | 248.08 | 8.08 | 0.0123 | 显著 |
C | 802.25 | 26.14 | 0.0001 | 显著 |
D | 1 351.36 | 44.03 | < 0.0001 | 显著 |
AB | 8.61 | 0.28 | 0.6042 | |
AC | 9.41 | 0.31 | 0.5879 | |
AD | 82.22 | 2.68 | 0.1225 | |
BC | 14.03 | 0.46 | 0.5092 | |
BD | 1.27 | 0.041 | 0.8414 | |
CD | 111.47 | 3.63 | 0.0760 | |
A2 | 10 703.87 | 348.79 | < 0.0001 | 显著 |
B2 | 4 906.32 | 159.87 | < 0.0001 | 显著 |
C2 | 261.39 | 8.52 | 0.0106 | 显著 |
D2 | 196.74 | 6.41 | 0.0230 | 显著 |
失拟项 | 401.33 | 3.40 | 0.0945 | 不显著 |
表5 方差分析表(III型方形平方和)
来源 | 平方和 | F值 | P值 | 显著性(P<0.05) |
---|---|---|---|---|
模型 | 18 325.23 | 42.65 | < 0.0001 | 显著 |
A | 1 791.02 | 58.36 | < 0.0001 | 显著 |
B | 248.08 | 8.08 | 0.0123 | 显著 |
C | 802.25 | 26.14 | 0.0001 | 显著 |
D | 1 351.36 | 44.03 | < 0.0001 | 显著 |
AB | 8.61 | 0.28 | 0.6042 | |
AC | 9.41 | 0.31 | 0.5879 | |
AD | 82.22 | 2.68 | 0.1225 | |
BC | 14.03 | 0.46 | 0.5092 | |
BD | 1.27 | 0.041 | 0.8414 | |
CD | 111.47 | 3.63 | 0.0760 | |
A2 | 10 703.87 | 348.79 | < 0.0001 | 显著 |
B2 | 4 906.32 | 159.87 | < 0.0001 | 显著 |
C2 | 261.39 | 8.52 | 0.0106 | 显著 |
D2 | 196.74 | 6.41 | 0.0230 | 显著 |
失拟项 | 401.33 | 3.40 | 0.0945 | 不显著 |
[1] |
He H, Hao X, Zhou W, et al. Identification of antimicrobial metabolites produced by a potential biocontrol Actinomycete strain A217[J]. Journal of Applied Microbiology, 2020,128(4):1143-1152.
doi: 10.1111/jam.14548 pmid: 31830360 |
[2] |
Do Kim J, Kang JE, Kim BS. Postharvest disease control efficacy of the polyene macrolide lucensomycin produced by Streptomyces plumbeus strain CA5 against gray mold on grapes[J]. Postharvest Biology and Technology, 2020,162:111115.
doi: 10.1016/j.postharvbio.2019.111115 URL |
[3] |
Mingma R, Pathom-aree W, Trakulnaleamsai S, et al. Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine[J]. World Journal of Microbiology and Biotechnology, 2014,30(1):271-280.
URL pmid: 23913026 |
[4] |
Ruanpanun P, Nimnoi P. Evaluation on the efficiency and persistence of Streptomyces jietaisiensis strain A034 in controlling root knot disease and promoting plant growth in the plant-parasitic nematode infested soils[J]. Biological Control, 2020,144:104221.
doi: 10.1016/j.biocontrol.2020.104221 URL |
[5] |
Singh H, Naik B, Kumar V, et al. Screening of endophytic actinomycetes for their herbicidal activity[J]. Annals of Agrarian Science, 2018,16(2):101-107.
doi: 10.1016/j.aasci.2017.11.001 URL |
[6] |
Xie CL, Chen R, Yang S, et al. Nesteretal A, a novel class of cage-like polyketide from marine-derived actinomycete Nesterenkonia halobia[J]. Organic Letters, 2019,21(20):8174-8177.
doi: 10.1021/acs.orglett.9b02634 URL pmid: 31423796 |
[7] |
Zhou X, Liang Z, Li K, et al. Exploring the natural piericidins as anti-renal cell carcinoma agents targeting peroxiredoxin 1[J]. Journal of Medicinal Chemistry, 2019,62(15):7058-7069.
doi: 10.1021/acs.jmedchem.9b00598 URL pmid: 31298537 |
[8] |
Phankhajon K, Somdee A, Somdee T. Algicidal activity of an actinomycete strain, Streptomyces rameus, against Microcystis aeruginosa[J]. Water Science and Technology, 2016,74(6):1398-1408.
doi: 10.2166/wst.2016.305 URL pmid: 27685969 |
[9] | 马媛媛. 抗线虫放线菌筛选及其对番茄生长与根际微生态系统的影响[D]. 杨凌:西北农林科技大学, 2017. |
Ma YY. Screening of nematode resistant actinomycetes and their effects on tomato growth and rhizosphere microecological system[D]. Yangling:Northwest A&F University, 2017. | |
[10] | 杨斌, 薛泉宏, 陈占全, 等. 微波处理对土壤放线菌分离效果的影响[J]. 应用生态学报, 2008(5):1091-1098. |
Yang B, Xue QH, Chen ZQ, et al. Effects of microwave irradiation on isolation of soil actinomycete[J]. Chinese Journal of Applied Ecology, 2008(5):1091-1098. | |
[11] |
Ramesh S, William A. Marine actinomycetes:An ongoing source of novel bioactive metabolites[J]. Microbiological Research, 2012,167(10):571-580.
doi: 10.1016/j.micres.2012.06.005 URL |
[12] | 单丽萍. 白黄链霉菌TD-1抑制番茄灰霉病菌作用机理的初步研究[D]. 天津:天津科技大学, 2015. |
Shan LP. Studies on action mechanism of Streptomyces albidoflavus TD-1 against Botrytis cinerea[D]. Tianjin:Tianjin University of Science and Technology, 2015. | |
[13] | 张琳, 常恺莉, 姚感, 等. Streptomyces albireticuli和Streptom-yces albofavus次生代谢产物的研究进展[J/OL]. 中国抗生素杂志. https://doi.org/10.13461/j.cnki.cja.006949. |
Zhang L, Chang KL, Yao G, et al. Research progress on secondary metabolites of Streptomyces albireticuli and Streptomyces albofavus[J/OL]. Chinese Journal of Antibiotics. https://doi.org/10.13461/j.cnki.cja.006949. | |
[14] | 王志芳, 李贞景, 杨明冠, 等. Streptomyces alboflavus抗真菌物质对串珠镰刀菌的抑制机理研究[J]. 食品科学技术学报, 2019,37(5):64-71. |
Wang ZF, Li ZJ, Yang MG, et al. Inhibition mechanism of Streptomyces alboflavus antifungal substance against Fusarium moniliforme[J]. Journal of Food Science and Technology, 2019,37(5):64-71. | |
[15] | 曹师, 史敏, 李彦忠. 微白黄链霉菌对红豆草壳二孢的拮抗效果评价[J]. 草业科学, 2018,35(5):1098-1105. |
Cao S, Shi M, Li YZ. Evaluation of the antagonistic effect of Streptomyces albidoflavus against Ascochyta onobrychis[J]. Pratacultural Science, 2018,35(5):1098-1105. | |
[16] |
Gao Y, Zeng X D, Ren B, et al. Antagonistic activity against rice blast disease and elicitation of host-defence response capability of an endophytic Streptomyces albidoflavus OsiLf-2[J]. Plant Pathology, 2020,69(2):259-271.
doi: 10.1111/ppa.v69.2 URL |
[17] | 马怡茗. 高效降解羽毛的微白黄链霉菌Fea-10的分离鉴定及其角蛋白酶基因的异源表达[D]. 杨凌:西北农林科技大学, 2017. |
Ma YM. Isolation and identification of an efficient feather-degrading strain Streptomyces albidoflavus Fea-10 and heterologous expression of ITS keratinase gene[D]. Yangling:Northwest A&F University, 2017. | |
[18] |
Thekkangil A, Suchithra TV. Antidermatophytic lead compounds from Streptomycetes albidoflavus STV1572a against Tinea infections by Tricophyton mentagrophytes[J]. Microbial Pathogenesis, 2020,142:104037.
doi: S0882-4010(19)31181-7 pmid: 32027973 |
[19] |
Kaliyaraj D, Rajendran M, Angamuthu V. et al. Bioleaching of heavy metals from printed circuit board(PCB)by Streptomyces albidoflavus TN10 isolated from insect nest[J]. Bioresources and Bioprocessing, 2019,6(1):1-11.
doi: 10.1186/s40643-018-0235-3 URL |
[20] | 马溪平, 王延刚, 徐成斌, 等. 微生物降解硝基苯废水的研究进展[J]. 生态科学, 2011,30(5):562-567. |
Ma XP, Wang YG, Xu CB, et al. Research advances in microbial degradation of high salt water of nitrobenzene[J]. Ecological Scince, 2011,30(5):562-567. | |
[21] | 张家榕, 高振峰, 李娜, 等. 胡萝卜黑腐病生防放线菌G-1抑菌活性研究[J]. 河南农业科学, 2019,48(11):99-104. |
Zhang JR, Gao ZF, Li N, et al. The antifungal activity of biocontrol actinomycetes G-1 against Alternaria radicina[J]. Journal of Henan Agricultural Sciences, 2019,48(11):99-104. | |
[22] | 宋洪允, 韩立荣, 冯俊涛, 等. 94株土壤放线菌抑菌活性的初步筛选[J]. 西北农业学报, 2010,19(12):172-176. |
Song HY, Han LR, Feng JT, et al. Screening of 94 strains of soil actinomycetes with antifungal activity[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010,19(12):172-176. | |
[23] | 孙承航, 荒井雅吉, 供田洋, 等. 大环多内酯类抗生素FKI-0076E2的分离及结构鉴别[J]. 中国抗生素杂志, 2002(2):80-83. |
Sun CH, Alai M, Tomoda H, et al. Isolation, structural identif- ication of FKI-0076E2, an unstable macrocyclic polylactones from Talaromyces sp. FKI-0076[J]. Chinese Journal of Antibiotics, 2002(2):80-83. | |
[24] | 牛世全, 文娜, 韩建山, 等. 一株抗植病放线菌的发酵条件优化及活性产物研究[J]. 西北师范大学学报:自然科学版, 2020,56(1):69-77. |
Niu SQ, Wen N, Han JS, et al. Optimization of fermentation condition and study on bioactive product of an actinomycete against plant pathogenic[J]. Journal of Northwest Normal University:Natural Science, 2020,56(1):69-77. | |
[25] | 刘姝. 海洋链霉菌GB-2的分离筛选及其抗菌物质的研究[D]. 南京:南京农业大学, 2007. |
Liu S. Isolation of marine Streptomyces sp. GB-2 and studies on its antimicrobial substances[D]. Nanjing:Nanjing Agricultural University, 2017. | |
[26] | 周丽娜, 王莉莉, 张永娜, 等. 2株放线菌的抗菌活性及分类学地位[J]. 中国农学通报, 2015,31(11):182-189. |
Zhou LN, Wang LL, Zhang YN, et al. Antifungal activity and taxonomic status of two actinomycetes[J]. Chinese Agricultural Science Bulletin, 2015,31(11):182-189. | |
[27] | 张红. 白黄链霉菌TD-1抗菌活性物质发酵条件优化及分离纯化[D]. 天津:天津科技大学, 2013. |
Zhang H. Optimization of fermentation conditions and purification of antifungal substance from Streptomyces albidoflavus TD-1[D]. Tianjin:Tianjin University of Science and Technology, 2013. | |
[28] | Houssam MA, Bahobail AS, El-Sehrawi MH. Studies on isolation, classification and phylogenetic characterization of antifungal substance produced by Streptomyces albidoflavus-143[J]. New York Science Journal, 2011,4(3):40-53. |
[29] | 崔凡, 王伟, 王薇, 等. 人参锈腐病生防用高效拮抗放线菌分离鉴定及抑菌作用[J]. 吉林农业大学学报, 2019,41(2):175-184. |
Cui F, Wang W, Wang W, et al. Isolation, identification and inhibitory effect of high-efficiency antagonistic actinomycetes against Cylindrocarpon destructans for biological control[J]. Journal of Jilin Agricultural University, 2019,41(2):175-184. | |
[30] | 崔贵青. 葡萄白腐病菌拮抗放线菌的筛选、鉴定及发酵条件研究[D]. 长春:吉林农业大学, 2012. |
Cui GQ. Studies on screening, identification and fermentation conditions of actinomycete antagonistic against Coniella diplodiella[D]. Changchun:Jilin Agricultural University, 2012. | |
[31] | 王辰, 张谷月, 张园园, 等. 白刺链霉菌(Streptomyces albospinus)CT205菌株发酵条件优化及其次生代谢产物性质研究[J]. 南京农业大学学报, 2015,38(2):304-310. |
Wang C, Zhang GY, Zhang YY, et al. The optimization of fermentation conditions of Streptomyces albospinus CT205 and study of secondary metabolite[J]. Journal of Nanjing Agricultural University, 2015,38(2):304-310. | |
[32] | 牛世全, 耿晖, 阎薇如, 等. 黄芪根腐病生防放线菌筛选鉴定及其优化培养[J]. 植物保护学报, 2016,43(6):943-950. |
Niu SQ, Geng H, Yan WR, et al. Screening and identification of actinomycetes on Astragalus membranaceus root rot and optimization of fermentation conditions[J]. Journal of Plant Protection, 2016,43(6):943-950. | |
[33] | 林雁冰, 陆家贤, 颜霞, 等. 地黄根圈土壤拮抗放线菌筛选、鉴定及发酵条件优化[J]. 植物保护学报, 2010,37(3):234-240. |
Lin YB, Lu JX, Yan X, et al. Screening, identification and optimized fermentation condition of antagonistic actinomycetes from Rehminnae glutinoso rhizosphere[J]. Acta Phytophylacica Sinica, 2010,37(3):234-240. | |
[34] |
王彦, 牛世全, 郑豆豆, 等. 黄瓜枯萎病拮抗放线菌的筛选、鉴定及发酵条件优化[J]. 微生物学通报, 2019,46(5):1062-1073.
doi: 10.13344/j.microbiol.china.180428 URL |
Wang Y, Niu SQ, Zheng DD, et al. Screening, identification and optimization of fermentation conditions of an antagonistic actinomycetes to cucumber Fusarium wilt[J]. Microbiology China, 2019,46(5):1062-1073. | |
[35] | 牛世全, 赵丹, 豆建涛, 等. 敦煌盐碱土中抗黄芪根腐病放线菌的筛选、鉴定及发酵条件优化[J]. 西北师范大学学报:自然科学版, 2018,54(3):71-76. |
Niu SQ, Zhao Z, Dou JT, et al. Screening, identification and optimization of fermentation conditions of actinomycetes on Astragalus membranaceus root rot isolated from saline-alkali soils in Dunhuang[J]. Journal of Northwest Normal University:Natural Science, 2018,54(3):71-76. | |
[36] | 周美英, 郑志成. 海洋放线菌S-216菌株鉴定及其抗真菌抗生素合成条件研究[J]. 厦门大学学报:自然科学版, 1998(1):113-118. |
Zhou MY, Zheng ZC. Identification of marine antinomycetes S-216 Strain and its biosynthetic conditions of antifungal antibiotic[J]. Journal of Xiamen University:Natural Science, 1998(1):113-118. | |
[37] | 赵里京, 支月娥, 刘焕然, 等. 放线菌JSD-1抑菌活性初探及影响其抑菌活性的发酵条件优化[J]. 现代食品科技, 2019,35(12):176-181, 121. |
Zhao LJ, Zhi YE, Liu HR, et al. Preliminary study on antibacterial activity of Actinomycete JSD-1 and optimization of fermentation conditions affecting the antibacterial activity of JSD-1[J]. Modern Food Science and Technology, 2019,35(12):176-181, 121. | |
[38] | 梁光杰, 车程川, 巩志金, 等. 一株海洋链霉菌发酵条件的优化及其抑菌活性物质的研究[J]. 中国酿造, 2018,37(12):101-105. |
Liang GJ, Che CC, Gong ZJ, et al. Optimization of fermentation conditions of a marine Streptomyces and its antibacterial activity substances[J]. China Brewing, 2018,37(12):101-105. | |
[39] | 陈明, 穆凯热姆·阿卜来提, 刘政, 等. 响应面法优化链霉菌LG-9发酵条件及对棉花黄萎病菌的抑菌作用[J]. 湖北农业科学, 2018,57(8):71-76. |
Chen M, Mukaram A, Liu Z, et al. Optimization of fermentation conditions for antistreptomyces LG-9 using response surface methodology and its inhibiton on Verticillium dahlia[J]. Hubei Agricultural Sciences, 2018,57(8):71-76. | |
[40] | 戴蓬博, 蓝星杰, 宗兆锋, 等. 极长链霉菌SL01菌株抑菌活性物质的发酵条件优化和稳定性研究[J]. 农药学学报, 2016,18(6):729-737. |
Dai PB, Lan XJ, Zong ZF, et al. Optimization of fermentation conditions for antifungal substance production of Streptomyces longissimus SL01 and its stability evaluation[J]. Chinese Journal of Pesticide Science, 2016,18(6):729-737. |
[1] | 严涛, 陈珂可, 杨恒飞, 朱建国, 夏九学, 方曙光. 益生菌菌粉贮存活性影响因素研究[J]. 生物技术通报, 2023, 39(4): 296-303. |
[2] | 宋海娜, 吴心桐, 杨鲁豫, 耿喜宁, 张华敏, 宋小龙. 葱鳞葡萄孢菌诱导下韭菜RT-qPCR内参基因的筛选和验证[J]. 生物技术通报, 2023, 39(3): 101-115. |
[3] | 李圣彦, 李香银, 李鹏程, 张明俊, 张杰, 郎志宏. 转基因玉米2HVB5的性状鉴定及遗传稳定性分析[J]. 生物技术通报, 2023, 39(1): 21-30. |
[4] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
[5] | 王子琰, 王建, 张伦, 桂水清, 卢雪梅. 家蝇抗菌肽MDC对鼠伤寒沙门氏菌的抑菌稳定性研究[J]. 生物技术通报, 2022, 38(3): 149-156. |
[6] | 梁星星, 王佳, 许文涛. 抗病毒核苷酸类似物磷酸化修饰研究进展[J]. 生物技术通报, 2022, 38(2): 218-226. |
[7] | 张晨, 张佟佟, 刘海萍. 高活性和高热稳定性乙烯合成酶的筛选和鉴定[J]. 生物技术通报, 2022, 38(11): 269-276. |
[8] | 施兆荣, 孙述俊, 张广荣, 梅大海, 刘彦超, 杨成德. 甜瓜黑斑病菌的拮抗细菌筛选、鉴定及发酵条件优化[J]. 生物技术通报, 2022, 38(1): 115-124. |
[9] | 刘雪丹, 杨萌, 张静, 赵东旭. 葡萄糖-木糖共利用对重组大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 生物技术通报, 2021, 37(9): 171-179. |
[10] | 江迪, 徐春城. 发酵TMR应用及其微生物种群演替规律研究进展[J]. 生物技术通报, 2021, 37(9): 31-38. |
[11] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[12] | 周静, 黄文茂, 秦利军, 韩丽珍. 四株PGPR菌株混菌发酵体系的构建及促生效应评价[J]. 生物技术通报, 2021, 37(4): 116-126. |
[13] | 陈春, 宿玲恰, 夏伟, 吴敬. 定向进化提高来源于Arthrobacter ramosus 的MTHase的热稳定性[J]. 生物技术通报, 2021, 37(3): 84-91. |
[14] | 郑叶子, 王丹, 潘咪, 王艳玲, 安丽君. 拟南芥GLABROUS 1两个新等位突变体的筛选和鉴定[J]. 生物技术通报, 2021, 37(2): 15-23. |
[15] | 余琴, 马现永, 邓盾, 王永飞. 海氏肠球菌IDO5对猪粪废水中吲哚降解条件优化及降解途径分析[J]. 生物技术通报, 2021, 37(12): 113-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||