生物技术通报 ›› 2023, Vol. 39 ›› Issue (12): 250-260.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0614
蒋慧慧1,2(), 王强2, 付维来2,3, 饶志明2, 张显2()
收稿日期:
2023-06-28
出版日期:
2023-12-26
发布日期:
2024-01-11
通讯作者:
张显,男,博士,教授,研究方向:工业酶与微生物;E-mail: zx@jiangnan.edu.cn作者简介:
蒋慧慧,女,硕士,讲师,研究方向:微生物资源利用;E-mail: 053044@chu.edu.cn
基金资助:
JIANG Hui-hui1,2(), WANG Qiang2, FU Wei-lai2,3, RAO Zhi-ming2, ZHANG Xian2()
Received:
2023-06-28
Published:
2023-12-26
Online:
2024-01-11
摘要:
水产养殖过程中氮元素超标易造成水质恶化,威胁水产动物的生长繁殖,亟需安全、高效的脱氮方法。从福建某水产养殖池底的污泥中筛选出一株氨氮降解菌,菌种鉴定后进行适应性驯化,并研究不同条件对菌株生长和氨氮降解的影响,随后又以亚硝态氮为唯一氮源检测菌株的好氧反硝化特性。菌株经16S rRNA鉴定为阿氏芽孢杆菌Bacillus aryabhattai,命名为JN01;驯化后,菌株的生长、氨氮去除率均有不同程度提高,初始NH4+-N浓度为200 mg/L的氮去除率最高达87.29%;影响菌株脱氮的单因素实验结果表明,当NH4+-N浓度为200 mg/L、丁二酸钠为碳源、碳氮比为15∶1、pH 7.5、培养温度为30℃时,菌株的氨氮降解率可以达到92.78%。在亚硝态氮为唯一氮源的条件下,菌株JN01也能进行好氧反硝化转化,NO2--N降解率为82.30%。B. aryabhattai JN01具有良好的异养硝化和好氧反硝化特性,具备同时解决养殖废水中氨氮和亚硝酸盐超标的应用潜力。
蒋慧慧, 王强, 付维来, 饶志明, 张显. 一株异养硝化-好氧反硝化细菌的筛选及氮转化特性研究[J]. 生物技术通报, 2023, 39(12): 250-260.
JIANG Hui-hui, WANG Qiang, FU Wei-lai, RAO Zhi-ming, ZHANG Xian. Screening of a Heterotrophic Nitrifying-aerobic Denitrifying Bacterium and Its Nitrogen Transforming Characterization[J]. Biotechnology Bulletin, 2023, 39(12): 250-260.
图4 菌株JN01驯化前后的 OD600 nm(A)和 NH4+-N去除效率(B)的变化
Fig. 4 Variation of OD600 nm(A)and NH4+-N removal efficiency(B)before and after the domestication of B. aryabhattai JN01
图5 不同氮源浓度对菌株JN01的OD600 nm(A)和NH4+-N去除率(B)的影响
Fig. 5 Effects of N concentration on the growth characteristics OD600 nm(A)and NH4+-N removal efficiencies(B)of B. aryabhattai JN01
图6 不同碳源对菌株JN01的OD600 nm(A)和NH4+-N去除率(B)的影响
Fig. 6 Effects of different carbon sources on the growth characteristics OD600 nm(A)and NH4+-N removal efficiencies(B)of B. aryabhattai JN01
图7 C/N对菌株JN01的OD600 nm(A)和NH4+-N去除率(B)的影响
Fig. 7 Effects of C/N on the growth performance OD600 nm(A)and NH4+-N removal efficiencies(B)of B. aryabhattai JN01
图8 初始pH对菌株JN01的OD600 nm(A)和NH4+-N去除率(B)的影响
Fig. 8 Effects of pH on the growth performance OD600 nm(A)and NH4+-N removal efficiencies(B)of B. aryabhattai JN01
图9 温度对菌株JN01的OD600 nm(A)和NH4+-N去除率(B)的影响
Fig. 9 Effects of temperature on the growth performance OD600 nm(A)and NH4+-N removal efficiencies(B)of B. aryabhattai JN01
图10 菌株JN01在铵态氮(A)和亚硝态氮(B)为唯一氮源培养时的生长曲线及NH4+-N、NO3--N、NO2--N和TN 变化趋势
Fig. 10 Growth characteristics of strain JN01 and trends of NH4+-N, NO3--N, NO2--N, TN with initial NH4+-N (A) or initial NO2--N (B) as sole nitrogen source
菌株名Strain | 来源Source | NH4+-N去除率NH4+-N removal efficiency/% | NO3--N去除率NO3--N removal efficiency/% | NO2--N去除率NO2--N removal efficiency/% | 总氮去除率Total nitrogen removal effciency/% | 参考文献Reference |
---|---|---|---|---|---|---|
芽孢杆菌属Bacillus sp. | ||||||
B. aryabhattai JN01 | 水产养殖池底污泥 | 92.78 | / | 82.30 | 80.73 | 本文 |
B. Subtilis Ab03 | 鱼虾养殖池塘 | 91.67 | / | / | 89.01 | [ |
B. thuringiensis WXN-23 | 猪场猪皮饲料滤液 | 86.74 | 90.74 | 100.00 | 82.12 | [ |
B. cereus GS-5 | 生物膜 | 87.10-93.10 | 69.40-88.40 | / | / | [ |
B. litoralis N31 | 养殖水体 | 86.30 | 89.40 | 89.30 | / | [ |
B. simplex H-b | 土壤 | 82.16 | 67.29 | 78.69 | / | [ |
其他种属微生物 Other species of microorganisms | ||||||
H.venusta TJPU05 | 运城盐湖 | 86.12 | 95.68 | 100.00 | 84.57 | [ |
P. alcaliphila | 冬季水浸稻田土壤 | 100.00 | 100.00 | 100.00 | / | [ |
Enterococcus sp. XH1 | 黄河三角洲海水 | 78.90 | 68.20 | / | 78.80 | [ |
Acinetobacter johnsonii sp. N26 | 羊粪堆肥 | 95.50 | 93.60 | / | / | [ |
Pseudomonas sp.GZWN4 | 养殖水体 | 98.62 | 82.54 | 99.72 | / | [ |
Barnettozyma californica K1 | 海洋表层沉积物 | 99.11 | 98.84 | 99.13 | 90.16 | [ |
Glutamicibacter sp. WS1 | 活性污泥 | 100.00 | 98.10 | 99.87 | / | [ |
表1 HNAD菌对NH4+-N、NO3--N、NO2--N和TN的去除情况
Table 1 Removal efficiencies of NH4+-N, NO3--N, NO2--N and TN by HNAD microorganisms
菌株名Strain | 来源Source | NH4+-N去除率NH4+-N removal efficiency/% | NO3--N去除率NO3--N removal efficiency/% | NO2--N去除率NO2--N removal efficiency/% | 总氮去除率Total nitrogen removal effciency/% | 参考文献Reference |
---|---|---|---|---|---|---|
芽孢杆菌属Bacillus sp. | ||||||
B. aryabhattai JN01 | 水产养殖池底污泥 | 92.78 | / | 82.30 | 80.73 | 本文 |
B. Subtilis Ab03 | 鱼虾养殖池塘 | 91.67 | / | / | 89.01 | [ |
B. thuringiensis WXN-23 | 猪场猪皮饲料滤液 | 86.74 | 90.74 | 100.00 | 82.12 | [ |
B. cereus GS-5 | 生物膜 | 87.10-93.10 | 69.40-88.40 | / | / | [ |
B. litoralis N31 | 养殖水体 | 86.30 | 89.40 | 89.30 | / | [ |
B. simplex H-b | 土壤 | 82.16 | 67.29 | 78.69 | / | [ |
其他种属微生物 Other species of microorganisms | ||||||
H.venusta TJPU05 | 运城盐湖 | 86.12 | 95.68 | 100.00 | 84.57 | [ |
P. alcaliphila | 冬季水浸稻田土壤 | 100.00 | 100.00 | 100.00 | / | [ |
Enterococcus sp. XH1 | 黄河三角洲海水 | 78.90 | 68.20 | / | 78.80 | [ |
Acinetobacter johnsonii sp. N26 | 羊粪堆肥 | 95.50 | 93.60 | / | / | [ |
Pseudomonas sp.GZWN4 | 养殖水体 | 98.62 | 82.54 | 99.72 | / | [ |
Barnettozyma californica K1 | 海洋表层沉积物 | 99.11 | 98.84 | 99.13 | 90.16 | [ |
Glutamicibacter sp. WS1 | 活性污泥 | 100.00 | 98.10 | 99.87 | / | [ |
[1] |
Chen MP, He TX, Wu QF, et al. Enhanced heterotrophic nitrification and aerobic denitrification performance of Glutamicibacter arilaitensis EM-H8 with different carbon sources[J]. Chemosphere, 2023, 323: 138266.
doi: 10.1016/j.chemosphere.2023.138266 URL |
[2] |
Yang T, Xin Y, Zhang L, et al. Characterization on the aerobic denitrification process of Bacillus strains[J]. Biomass Bioenergy, 2020, 140: 105677.
doi: 10.1016/j.biombioe.2020.105677 URL |
[3] |
Chen JL, Xu J, Zhang SN, et al. Nitrogen removal characteristics of a novel heterotrophic nitrification and aerobic denitrification bacteria, Alcaligenes faecalis strain WT14[J]. J Environ Manage, 2021, 282: 111961.
doi: 10.1016/j.jenvman.2021.111961 URL |
[4] |
Jetten MS, Logemann S, Muyzer G, et al. Novel principles in the microbial conversion of nitrogen compounds[J]. Antonie Van Leeuwenhoek, 1997, 71(1-2): 75-93.
doi: 10.1023/A:1000150219937 URL |
[5] |
Huang MQ, Cui YW, Huang JL, et al. A novel Pseudomonas aeruginosa strain performs simultaneous heterotrophic nitrification-aerobic denitrification and aerobic phosphate removal[J]. Water Res, 2022, 221: 118823.
doi: 10.1016/j.watres.2022.118823 URL |
[6] |
Man QL, Zhang PL, Huang WQ, et al. A heterotrophic nitrification-aerobic denitrification bacterium Halomonas venusta TJPU05 suitable for nitrogen removal from high-salinity wastewater[J]. Front Environ Sci Eng, 2021, 16(6): 69.
doi: 10.1007/s11783-021-1503-6 |
[7] | 陈思宇, 刘晶, 杨正, 等. 低温异养硝化-好氧反硝化菌的分离及其除氮特性[J]. 湖南农业大学学报: 自然科学版, 2022, 48(6): 712-717. |
Chen SY, Liu J, Yang Z, et al. Isolation and nitrogen removal characteristics of a low temperature heterotrophic nitrification-aerobic denitrification bacterium[J]. J Hunan Agric Univ Nat Sci, 2022, 48(6): 712-717. | |
[8] | 杨墨. 耐冷菌Janthinobacterium sp. M-11的异养硝化好氧反硝化特性及耐冷机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
Yang M. Research on heterotrophic nitrification-aerobic denitrification characterisation and psychrotrophic mechanism of psychrotrophic strain Janthinobacterium sp. M-11[D]. Harbin:Harbin Institute of Technology, 2019. | |
[9] |
李誉琦, 马佩钰, 刘涵, 等. 一株耐高温亚硝酸盐型反硝化细菌的鉴定及脱氮特性[J]. 生物技术通报, 2019, 35(9): 194-201.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0130 |
Li YQ, Ma PY, Liu H, et al. Identification and denitrification characters of a high-temperature-resistant nitrite-denitrifying bacterium[J]. Biotechnol Bull, 2019, 35(9): 194-201. | |
[10] |
Wang Q, Fu WL, Lu RQ, et al. Characterization of Bacillus subtilis Ab03 for efficient ammonia nitrogen removal[J]. Syst Microbiol Biomanuf, 2022, 2(3): 580-588.
doi: 10.1007/s43393-022-00088-6 |
[11] |
Xu N, Liao M, Liang YQ, et al. Biological nitrogen removal capability and pathways analysis of a novel low C/N ratio heterotrophic nitrifying and aerobic denitrifying bacterium(Bacillus thuringiensis strain WXN-23)[J]. Environ Res, 2021, 195: 110797.
doi: 10.1016/j.envres.2021.110797 URL |
[12] | 殷璐璐, 吕剑, 王建华, 等. 一株蔗糖偏好型海洋异养硝化-好氧反硝化菌的分离鉴定及性能研究[J]. 海洋环境科学, 2023, 42(3): 425-431. |
Yin LL, Lyu J, Wang JH, et al. Isolation, identification and characteristics of a sucrose-preferred heterotrophic nitrification-aerobic denitrification bacterium strain from seawater[J]. Mar Environ Sci, 2023, 42(3): 425-431. | |
[13] |
杨景瑞, 王莹, 陈虎, 等. 一株好氧反硝化菌的脱氮特性及其氮代谢机理研究[J]. 工业水处理, 2023, 43(10):135-141.
doi: 10.19965/j.cnki.iwt.2023-0192 |
Yang J, Wang Y, Chen H, et al. Nitrogen removal characteristics and metabolism mechanism of an aerobic denitrifying bacteria[J]. Industrial Water Treatment, 2023, 43(10):135-141.
doi: 10.19965/j.cnki.iwt.2023-0192 |
|
[14] |
Fu WL, Wang Q, Chen SH, et al. Isolation and identification of an efficient aerobic denitrifying Pseudomonas stutzeri strain and characterization of its nitrite degradation[J]. Catalysts, 2021, 11(10): 1214.
doi: 10.3390/catal11101214 URL |
[15] | 夏远舰, 杨小丽, 李海华, 等. 异养硝化-好氧反硝化菌Acinetobacter johnsonii sp. N26的脱氮性能及代谢途径[J]. 微生物学通报, 2023, 50(4): 1374-1395. |
Xia YJ, Yang XL, Li HH, et al. Optimization of nitrogen removal performance and metabolic pathway of a heterotrophic nitrifying-aerobic denitrifying bacterial strain Acinetobacter johnsonii sp. N26[J]. Microbiol China, 2023, 50(4): 1374-1395. | |
[16] | 张宇红, 刘香宇, 董先博, 等. 好氧反硝化细菌SY-D-22的分离、优化及脱氮机理[J]. 微生物学通报, 2023, 50(5): 1815-1825. |
Zhang YH, Liu XY, Dong XB, et al. Aerobic denitrifying bacterium SY-D-22: isolation, optimization of denitrification conditions, and characterization of denitrification mechanism[J]. Microbiol China, 2023, 50(5): 1815-1825. | |
[17] |
Rout PR, Dash RR, Bhunia P, et al. Role of Bacillus cereus GS-5 strain on simultaneous nitrogen and phosphorous removal from domestic wastewater in an inventive single unit multi-layer packed bed bioreactor[J]. Bioresour Technol, 2018, 262: 251-260.
doi: 10.1016/j.biortech.2018.04.087 URL |
[18] |
Huang F, Pan LQ, Lv N, et al. Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification[J]. J Biosci Bioeng, 2017, 124(5): 564-571.
doi: S1389-1723(17)30267-0 pmid: 28716629 |
[19] |
Yang Q, Yang T, Shi Y, et al. The nitrogen removal characterization of a cold-adapted bacterium: Bacillus simplex H-B[J]. Bioresour Technol, 2021, 323: 124554.
doi: 10.1016/j.biortech.2020.124554 URL |
[20] |
Su ZP, Li Y, Pan LQ, et al. Nitrogen removal performance, quantitative detection and potential application of a novel aerobic denitrifying strain, Pseudomonas sp. GZWN4 isolated from aquaculture water[J]. Bioprocess Biosyst Eng, 2021, 44(6): 1237-1251.
doi: 10.1007/s00449-021-02523-9 |
[21] |
Fang JK, Liao SA, Zhang SS, et al. Characteristics of a novel heterotrophic nitrification-aerobic denitrification yeast, Barnettozyma californica K1[J]. Bioresour Technol, 2021, 339: 125665.
doi: 10.1016/j.biortech.2021.125665 URL |
[22] | 魏渤惠, 罗晓, 吕鹏翼, 等. 高效异养硝化-好氧反硝化菌Glutamicibacter sp. WS1低温下对多种氮源的脱氮特性及氮代谢机制[J]. 环境科学, 2023, 44(9): 5006-5016. |
Wei BH, Luo X, Lü PY, et al. Nitrogen removal characteristics and metabolism mechanism of high-efficiency cold-tolerant heterotrophic nitrification-aerobic denitrification bacterium Glutamicibacter sp. WS1 for various nitrogen sources at low temperature[J]. Environ Sci, 2023, 44(9): 5006-5016. | |
[23] | Marek K, Pawęska K, Bawiec A. Treatment of wastewater with high ammonium nitrogen concentration[J]. J Ecol Eng, 2021, 22(4): 224-231. |
[24] |
杜全能, 朱文娟, 兰时乐. 一株异养硝化-好氧反硝化皱褶念珠菌(Diutina rugosa)的分离及脱氮特性[J]. 生物技术通报, 2020, 36(1): 60-65.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0685 |
Du QN, Zhu WJ, Lan SL. Isolation and characterization of heterotrophic nitrification-aerboic denitrification Diutina rugosa[J]. Biotechnol Bull, 2020, 36(1): 60-65. | |
[25] |
Yang M, Lu DW, Yang JX, et al. Carbon and nitrogen metabolic pathways and interaction of cold-resistant heterotrophic nitrifying bacteria under aerobic and anaerobic conditions[J]. Chemosphere, 2019, 234: 162-170.
doi: S0045-6535(19)31290-1 pmid: 31207421 |
[26] |
Yang L, Wang XH, Cui S, et al. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5[J]. Bioresour Technol, 2019, 285: 121360.
doi: 10.1016/j.biortech.2019.121360 URL |
[27] | Taylor SM, He YL, Zhao B, et al. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL[J]. J Environ Sci(China), 2009, 21(10): 1336-1341. |
[28] |
Patureau D, Bernet N, Delgenès JP, et al. Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium[J]. Appl Microbiol Biotechnol, 2000, 54(4): 535-542.
pmid: 11092629 |
[29] |
Song T, Zhang XL, Li J, et al. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms(HNADMs)[J]. Sci Total Environ, 2021, 801: 149319.
doi: 10.1016/j.scitotenv.2021.149319 URL |
[30] | 黄诗玮, 田云, 马述, 等. 异养硝化-好氧反硝化菌氮代谢特性研究进展[J]. 生物学杂志, 2023, 40(1): 91-97. |
Huang SW, Tian Y, Ma S, et al. Research progress on nitrogen metabolism characteristics of heterotrophic nitrification-aerobic denitrification bacteria[J]. J Biol, 2023, 40(1): 91-97. | |
[31] |
Zhang QL, Liu Y, Ai GM, et al. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7[J]. Bioresour Technol, 2012, 108: 35-44.
doi: 10.1016/j.biortech.2011.12.139 URL |
[32] |
Chen HJ, Zhou WZ, Zhu SN, et al. Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification-aerobic denitrification[J]. Bioresour Technol, 2021, 322: 124507.
doi: 10.1016/j.biortech.2020.124507 URL |
[1] | 张宇红, 董先博, 刘香宇, 许家琪, 徐子祾. 新型异养硝化-好氧反硝化菌Paracoccus sp. QD-19的分离及脱氮特性研究[J]. 生物技术通报, 2023, 39(3): 301-310. |
[2] | 董怡华, 王凌潇, 任涵雪, 陈峰. 一株耐低温异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性[J]. 生物技术通报, 2023, 39(12): 237-249. |
[3] | 高宇轩, 靳静晨, 徐利杉, 高雅娟, 张闻天, 李晨晨, 张国伟, 靳永胜. 耐盐异养硝化-好氧反硝化菌Bacillus megatherium N07的分离及脱氮特性[J]. 生物技术通报, 2022, 38(7): 247-257. |
[4] | 赵洋, 孙慧明, 林浩澎, 罗娉婷, 朱雅婷, 陈琼华, 舒琥. 一株安全高效的好氧反硝化菌Pseudomonas stutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10): 226-234. |
[5] | 李珍阳, 姜润, 刘琳, 李思琦, 王晓慧. 低温异养硝化菌的筛选、鉴定及降解特性研究[J]. 生物技术通报, 2021, 37(10): 45-56. |
[6] | 李思琦, 杨静丹, 刘琳, 刘二佳, 王晓慧. 好氧反硝化菌Achromobacter sp.L16的脱氮特性[J]. 生物技术通报, 2020, 36(6): 93-101. |
[7] | 杜全能, 朱文娟, 兰时乐. 一株异养硝化-好氧反硝化皱褶念珠菌(Diutina rugosa)的分离及脱氮特性[J]. 生物技术通报, 2020, 36(1): 60-65. |
[8] | 李文甫, 杜柳冰, 刘思莹, 翁美遂, 舒琥, 陈琼华. 一株高效好氧反硝化细菌的分离鉴定及脱氮性能研究[J]. 生物技术通报, 2019, 35(9): 202-209. |
[9] | 李秋芬, 刘启臣, 徐爱玲, 张艳, 宋志文. 基于LAMP的好氧反硝化菌筛选及其反硝化性能[J]. 生物技术通报, 2019, 35(9): 210-217. |
[10] | 杨洋, 孟繁星, 王日昕. 急性氨氮胁迫下大弹涂鱼解毒代谢途径的研究[J]. 生物技术通报, 2019, 35(11): 72-81. |
[11] | 邓超, 杜秀娟, 黄涛, 郭英, 李炳学, 卜宁. 碳氮比对固氮菌株WN-F合成胞外多糖的影响[J]. 生物技术通报, 2018, 34(3): 194-199. |
[12] | 聂毅磊, 贾纬, 曾艳兵, 罗立津, 陈星伟, 庄鸿, 陈宏. 两株好氧反硝化聚磷菌的筛选、鉴定及水质净化研究[J]. 生物技术通报, 2017, 33(3): 116-121. |
[13] | 刘攀龙, 于鲁冀, 李廷梅, 范铮, 陈涛. 污染河流土著异养硝化菌的筛选及其鉴定[J]. 生物技术通报, 2017, 33(10): 178-183. |
[14] | 郝明辉,于鲁冀,李廷梅,刘攀龙. 一株异养硝化菌的筛选及生长特性研究[J]. 生物技术通报, 2016, 32(4): 168-174. |
[15] | 连红民, 邱忠平, 何昆明, 周文秀. 一株好氧反硝化-异养硝化菌的筛选及脱氮特性研究[J]. 生物技术通报, 2015, 31(6): 138-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||