生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 6-17.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0763
收稿日期:
2023-08-04
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
赵杨,男,博士,研究员,研究方向:渗透胁迫;E-mail: zhaoyang@cemps.ac.cn作者简介:
于波,男,博士,副研究员,研究方向:渗透胁迫;E-mail: boyu@cemps.ac.cn
基金资助:
YU Bo(), QIN Xiao-hui, ZHAO Yang()
Received:
2023-08-04
Published:
2023-11-26
Online:
2023-12-20
摘要:
干旱导致渗透胁迫,是造成作物减产的主要自然灾害。自达尔文时代,科学家开始探索植物感知和应答干旱胁迫的机制。现已阐明胁迫激素脱落酸信号途径,并逐步获得植物感知干旱和渗透胁迫的一些线索。本文总结了近年来干旱和渗透信号在植物中感知和传导的研究进展,对干旱胁迫可能的输入信号以及植物潜在的感知方式进行阐述,并提出了干旱胁迫信号研究中尚需解决的核心科学问题,期望为解析植物干旱信号感知和作物抗逆遗传改良提供线索。
于波, 秦晓惠, 赵杨. 植物感应干旱信号的机制[J]. 生物技术通报, 2023, 39(11): 6-17.
YU Bo, QIN Xiao-hui, ZHAO Yang. Mechanisms of Plant Sensing Drought Signals[J]. Biotechnology Bulletin, 2023, 39(11): 6-17.
[1] | 新华社. 《第三次全国国土调查主要数据公报》[J]. 中国农业综合开发, 2021(9): 46. |
Xinhua News Agency. Bulletin on main data of the third national land survey[J]. Agric Compr Dev China, 2021(9): 46. | |
[2] | 彭珂珊. 21世纪中国水资源危机[J]. 水利水电科技进展, 2000, 20(5): 13-16, 68. |
Peng KS. China water resource crisis in the 21th century[J]. Adv Sci Technol Water Resour, 2000, 20(5): 13-16, 68. | |
[3] |
Hu JL, Wang SC, Yeh FY. Total-factor water efficiency of regions in China[J]. Resour Policy, 2006, 31(4): 217-230.
doi: 10.1016/j.resourpol.2007.02.001 URL |
[4] | 2022年中国水资源公报[J]. 水资源开发与管理, 2023, 9(7): 2. |
China water resources bulletin in 2022[J]. Water Resour Dev Manag, 2023, 9(7): 2. | |
[5] | Sachs J. Lectures on the physiology of plants[M]. Oxford: The Clarendon Press, 1887. |
[6] |
Kutschera U, Niklas KJ. Julius Sachs(1868): the father of plant physiology[J]. Am J Bot, 2018, 105(4): 656-666.
doi: 10.1002/ajb2.1078 pmid: 29772073 |
[7] |
Kobayashi A, Takahashi A, Kakimoto Y, et al. A gene essential for hydrotropism in roots[J]. Proc Natl Acad Sci USA, 2007, 104(11): 4724-4729.
pmid: 17360591 |
[8] |
Eagles CF, Wareing PF. Dormancy regulators in woody plants: experimental induction of dormancy in Betula pubescens[J]. Nature, 1963, 199(4896): 874-875.
doi: 10.1038/199874a0 |
[9] |
Ohkuma K, Lyon JL, Addicott FT, et al. Abscisin II, an abscission-accelerating substance from young cotton fruit[J]. Science, 1963, 142(3599): 1592-1593.
doi: 10.1126/science.142.3599.1592 pmid: 17741533 |
[10] |
Ma Y, Szostkiewicz I, Korte A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009, 324(5930): 1064-1068.
doi: 10.1126/science.1172408 pmid: 19407143 |
[11] |
Park SY, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930): 1068-1071.
doi: 10.1126/science.1173041 URL |
[12] |
Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana[J]. J Biol Chem, 2004, 279(40): 41758-41766.
doi: 10.1074/jbc.M405259200 pmid: 15292193 |
[13] |
Kobayashi Y, Yamamoto S, Minami H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid[J]. Plant Cell, 2004, 16(5): 1163-1177.
doi: 10.1105/tpc.019943 pmid: 15084714 |
[14] |
Fujii H, Verslues PE, Zhu JK. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo[J]. Proc Natl Acad Sci USA, 2011, 108(4): 1717-1722.
doi: 10.1073/pnas.1018367108 URL |
[15] | Saruhashi M, Kumar Ghosh T, Arai K, et al. Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2[J]. Proc Natl Acad Sci USA, 2015, 112(46): E6388-E6396. |
[16] | Stevenson SR, Kamisugi Y, Trinh CH, et al. Genetic analysis of Physcomitrella patens identifies abscisic acid non-responsive, a regulator of Aba responses unique to basal land plants and required for desiccation tolerance[J]. Plant Cell, 2016, 28(6): 1310-1327. |
[17] |
Lin Z, Li Y, Zhang ZJ, et al. A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants[J]. Nat Commun, 2020, 11(1): 613.
doi: 10.1038/s41467-020-14477-9 pmid: 32001690 |
[18] |
Takahashi Y, Zhang JB, Hsu PK, et al. MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response[J]. Nat Commun, 2020, 11(1): 12.
doi: 10.1038/s41467-019-13875-y pmid: 31896774 |
[19] |
Soma F, Takahashi F, Suzuki T, et al. Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress[J]. Nat Commun, 2020, 11(1): 1373.
doi: 10.1038/s41467-020-15239-3 pmid: 32170072 |
[20] |
Yuan F, Yang HM, Xue Y, et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis[J]. Nature, 2014, 514(7522): 367-371.
doi: 10.1038/nature13593 |
[21] |
Chen K, Gao JH, Sun SJ, et al. BONZAI proteins control global osmotic stress responses in plants[J]. Curr Biol, 2020, 30(24): 4815-4825.e4.
doi: 10.1016/j.cub.2020.09.016 URL |
[22] |
Yang ZR, Qin F. The battle of crops against drought: genetic dissection and improvement[J]. J Integr Plant Biol, 2023, 65(2): 496-525.
doi: 10.1111/jipb.13451 |
[23] | Zhao MC, Zhang Q, Liu H, et al. The osmotic stress-activated receptor-like kinase DPY1 mediates SnRK2 kinase activation and drought tolerance in Setaria[J]. Plant Cell, 2023: koad200. |
[24] |
Nongpiur RC, Singla-Pareek SL, Pareek A. The quest for osmosensors in plants[J]. J Exp Bot, 2020, 71(2): 595-607.
doi: 10.1093/jxb/erz263 pmid: 31145792 |
[25] |
Lamers J, van der Meer T, Testerink C. How plants sense and respond to stressful environments[J]. Plant Physiol, 2020, 182(4): 1624-1635.
doi: 10.1104/pp.19.01464 pmid: 32132112 |
[26] |
Zhu JK. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324.
doi: 10.1016/j.cell.2016.08.029 URL |
[27] |
Gorgues L, Li XL, Maurel C, et al. Root osmotic sensing from local perception to systemic responses[J]. Stress Biol, 2022, 2(1): 36.
doi: 10.1007/s44154-022-00054-1 pmid: 37676549 |
[28] | Bacete L, Schulz J, Engelsdorf T, et al. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2022, 119(1): e2119258119. |
[29] |
Colin L, Ruhnow F, Zhu JK, et al. The cell biology of primary cell walls during salt stress[J]. Plant Cell, 2023, 35(1): 201-217.
doi: 10.1093/plcell/koac292 URL |
[30] |
Zhu SR, Fu Q, Xu F, et al. New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network[J]. New Phytol, 2021, 232(3): 1168-1183.
doi: 10.1111/nph.v232.3 URL |
[31] |
Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress[J]. New Phytol, 2020, 225(4): 1428-1439.
doi: 10.1111/nph.16166 pmid: 31486535 |
[32] |
Vaahtera L, Schulz J, Hamann T. Cell wall integrity maintenance during plant development and interaction with the environment[J]. Nat Plants, 2019, 5(9): 924-932.
doi: 10.1038/s41477-019-0502-0 pmid: 31506641 |
[33] |
Boisson-Dernier A, Roy S, Kritsas K, et al. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge[J]. Development, 2009, 136(19): 3279-3288.
doi: 10.1242/dev.040071 pmid: 19736323 |
[34] |
Lin WW, Tang WX, Pan X, et al. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling[J]. Curr Biol, 2022, 32(3): 497-507.e4.
doi: 10.1016/j.cub.2021.11.030 URL |
[35] |
Hématy K, Sado PE, Van Tuinen A, et al. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis[J]. Curr Biol, 2007, 17(11): 922-931.
doi: 10.1016/j.cub.2007.05.018 pmid: 17540573 |
[36] |
Haruta M, Sabat G, Stecker K, et al. A peptide hormone and its receptor protein kinase regulate plant cell expansion[J]. Science, 2014, 343(6169): 408-411.
doi: 10.1126/science.1244454 pmid: 24458638 |
[37] |
Dünser K, Gupta S, Herger A, et al. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana[J]. EMBO J, 2019, 38(7): e100353.
doi: 10.15252/embj.2018100353 URL |
[38] |
Zhao CZ, Zayed O, Yu ZP, et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2018, 115(51): 13123-13128.
doi: 10.1073/pnas.1816991115 URL |
[39] |
Feng W, Kita D, Peaucelle A, et al. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling[J]. Curr Biol, 2018, 28(5): 666-675.e5.
doi: S0960-9822(18)30025-3 pmid: 29456142 |
[40] |
Yu F, Qian LC, Nibau C, et al. FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase[J]. Proc Natl Acad Sci USA, 2012, 109(36): 14693-14698.
doi: 10.1073/pnas.1212547109 URL |
[41] |
Smokvarska M, Bayle V, Maneta-Peyret L, et al. The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling[J]. Sci Adv, 2023, 9(14): eadd4791.
doi: 10.1126/sciadv.add4791 URL |
[42] |
Yue ZL, Liu N, Deng ZP, et al. The receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune brassinosteroid signaling and regulate cell elongation in rice[J]. Curr Biol, 2022, 32(11): 2454-2466.e7.
doi: 10.1016/j.cub.2022.04.028 URL |
[43] |
Kohorn BD. Cell wall-associated kinases and pectin perception[J]. J Exp Bot, 2016, 67(2): 489-494.
doi: 10.1093/jxb/erv467 pmid: 26507892 |
[44] |
Van der Does D, Boutrot F, Engelsdorf T, et al. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses[J]. PLoS Genet, 2017, 13(6): e1006832.
doi: 10.1371/journal.pgen.1006832 URL |
[45] |
Gouget A, Senchou V, Govers F, et al. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis[J]. Plant Physiol, 2006, 140(1): 81-90.
doi: 10.1104/pp.105.066464 pmid: 16361528 |
[46] |
Zhang MF, Shan YY, Cox CD, et al. A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity[J]. Nat Commun, 2023, 14(1): 3943.
doi: 10.1038/s41467-023-39688-8 |
[47] |
Maity K, Heumann JM, McGrath AP, et al. Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating[J]. Proc Natl Acad Sci USA, 2019, 116(28): 14309-14318.
doi: 10.1073/pnas.1900774116 URL |
[48] |
Liu X, Wang JW, Sun LF. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2[J]. Nat Commun, 2018, 9(1): 5060.
doi: 10.1038/s41467-018-07564-5 pmid: 30498218 |
[49] |
Murthy SE, Dubin AE, Whitwam T, et al. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels[J]. eLife, 2018, 7: e41844.
doi: 10.7554/eLife.41844 URL |
[50] |
Jojoa-Cruz S, Saotome K, et al. Cryo-EM structure of the mechanically activated ion channel OSCA1.2[J]. eLife, 2018, 7: e41845.
doi: 10.7554/eLife.41845 URL |
[51] |
Hamilton ES, Jensen GS, Maksaev G, et al. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination[J]. Science, 2015, 350(6259): 438-441.
doi: 10.1126/science.aac6014 pmid: 26494758 |
[52] |
Basu D, Haswell ES. The mechanosensitive ion channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings[J]. Curr Biol, 2020, 30(14): 2716-2728.e6.
doi: 10.1016/j.cub.2020.05.015 URL |
[53] |
Codjoe JM, Richardson RA, McLoughlin F, et al. Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER-plasma membrane contact sites in Arabidopsis thaliana[J]. eLife, 2022, 11: e80501.
doi: 10.7554/eLife.80501 URL |
[54] |
Yamanaka T, Nakagawa Y, Mori K, et al. MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis[J]. Plant Physiol, 2010, 152(3): 1284-1296.
doi: 10.1104/pp.109.147371 pmid: 20097794 |
[55] |
Nakagawa Y, Katagiri T, Shinozaki K, et al. Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots[J]. Proc Natl Acad Sci USA, 2007, 104(9): 3639-3644.
doi: 10.1073/pnas.0607703104 pmid: 17360695 |
[56] |
Fiol DF, Kültz D. Osmotic stress sensing and signaling in fishes[J]. FEBS J, 2007, 274(22): 5790-5798.
pmid: 17944942 |
[57] |
Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates[J]. Cell, 2019, 176(3): 419-434.
doi: S0092-8674(18)31649-0 pmid: 30682370 |
[58] |
Jalihal AP, Pitchiaya S, Xiao LB, et al. Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change[J]. Mol Cell, 2020, 79(6): 978-990.e5.
doi: S1097-2765(20)30547-5 pmid: 32857953 |
[59] |
Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, et al. WNK kinases sense molecular crowding and rescue cell volume via phase separation[J]. Cell, 2022, 185(24): 4488-4506.e20.
doi: 10.1016/j.cell.2022.09.042 pmid: 36318922 |
[60] |
Dorone Y, Boeynaems S, Flores E, et al. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation[J]. Cell, 2021, 184(16): 4284-4298.e27.
doi: 10.1016/j.cell.2021.06.009 pmid: 34233164 |
[61] |
Cuevas-Velazquez CL, Vellosillo T, Guadalupe K, et al. Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells[J]. Nat Commun, 2021, 12(1): 5438.
doi: 10.1038/s41467-021-25736-8 pmid: 34521831 |
[62] |
Wang BY, Zhang HH, Huai JL, et al. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis[J]. Nat Chem Biol, 2022, 18(12): 1361-1369.
doi: 10.1038/s41589-022-01196-z |
[63] |
Soma F, Mogami J, Yoshida T, et al. ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants[J]. Nat Plants, 2017, 3: 16204.
doi: 10.1038/nplants.2016.204 pmid: 28059081 |
[64] |
Posas F, Wurgler-Murphy SM, Maeda T, et al. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 two-component osmosensor[J]. Cell, 1996, 86(6): 865-875.
doi: 10.1016/s0092-8674(00)80162-2 pmid: 8808622 |
[65] |
Ryder LS, Dagdas YF, Kershaw MJ, et al. A sensor kinase controls turgor-driven plant infection by the rice blast fungus[J]. Nature, 2019, 574(7778): 423-427.
doi: 10.1038/s41586-019-1637-x |
[66] |
Reiser V, Raitt DC, Saito H. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure[J]. J Cell Biol, 2003, 161(6): 1035-1040.
pmid: 12821642 |
[67] |
Urao T, Yakubov B, Satoh R, et al. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor[J]. Plant Cell, 1999, 11(9): 1743-1754.
doi: 10.1105/tpc.11.9.1743 pmid: 10488240 |
[68] |
Tran LS P, Urao T, Qin F, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis[J]. Proc Natl Acad Sci USA, 2007, 104(51): 20623-20628.
doi: 10.1073/pnas.0706547105 URL |
[69] |
Kumar MN, Jane WN, Verslues PE. Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response[J]. Plant Physiol, 2013, 161(2): 942-953.
doi: 10.1104/pp.112.209791 URL |
[70] |
Toriyama T, Shinozawa A, Yasumura Y, et al. Sensor histidine kinases mediate ABA and osmostress signaling in the moss Physcomitrium patens[J]. Curr Biol, 2022, 32(1): 164-175.e8.
doi: 10.1016/j.cub.2021.10.068 URL |
[71] |
Bakshi A, Piya S, Fernandez JC, et al. Ethylene receptors signal via a noncanonical pathway to regulate abscisic acid responses[J]. Plant Physiol, 2018, 176(1): 910-929.
doi: 10.1104/pp.17.01321 pmid: 29158332 |
[72] |
Posas F, Saito H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK[J]. Science, 1997, 276(5319): 1702-1705.
doi: 10.1126/science.276.5319.1702 pmid: 9180081 |
[73] |
Tatebayashi K, Yamamoto K, Nagoya M, et al. Osmosensing and scaffolding functions of the oligomeric four-transmembrane domain osmosensor Sho1[J]. Nat Commun, 2015, 6: 6975.
doi: 10.1038/ncomms7975 pmid: 25898136 |
[74] |
Tatebayashi K, Yamamoto K, Tomida T, et al. Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K[J]. EMBO J, 2020, 39(5): e103444.
doi: 10.15252/embj.2019103444 URL |
[75] |
Galvan-Ampudia CS, Julkowska MM, Darwish E, et al. Halotropism is a response of plant roots to avoid a saline environment[J]. Curr Biol, 2013, 23(20): 2044-2050.
doi: 10.1016/j.cub.2013.08.042 pmid: 24094855 |
[76] |
Dietrich D, Pang L, Kobayashi A, et al. Root hydrotropism is controlled via a cortex-specific growth mechanism[J]. Nat Plants, 2017, 3: 17057.
doi: 10.1038/nplants.2017.57 pmid: 28481327 |
[77] |
Shkolnik D, Nuriel R, Bonza MC, et al. MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca2+ signal essential for root water tracking in Arabidopsis[J]. Proc Natl Acad Sci USA, 2018, 115(31): 8031-8036.
doi: 10.1073/pnas.1804130115 pmid: 30012618 |
[78] |
Chang JK, Li XP, Fu WH, et al. Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana[J]. Cell Res, 2019, 29(12): 984-993.
doi: 10.1038/s41422-019-0239-3 |
[79] |
Miao R, Yuan W, Wang Y, et al. Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H+-ATPase 2[J]. Sci Adv, 2021, 7(12): eabd4113.
doi: 10.1126/sciadv.abd4113 URL |
[80] |
Yu B, Zheng WN, Persson S, et al. Protocol for analyzing root halotropism using split-agar system in Arabidopsis thaliana[J]. STAR Protoc, 2023, 4(2): 102157.
doi: 10.1016/j.xpro.2023.102157 URL |
[81] |
Yu B, Zheng WN, Xing L, et al. Root twisting drives halotropism via stress-induced microtubule reorientation[J]. Dev Cell, 2022, 57(20): 2412-2425.e6.
doi: 10.1016/j.devcel.2022.09.012 pmid: 36243013 |
[82] |
Grison MS, Kirk P, Brault ML, et al. Plasma membrane-associated receptor-like kinases relocalize to plasmodesmata in response to osmotic stress[J]. Plant Physiol, 2019, 181(1): 142-160.
doi: 10.1104/pp.19.00473 pmid: 31300470 |
[83] |
Chen XX, Wang TT, Rehman AU, et al. Arabidopsis U-box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor-like protein kinases LRR1 and KIN7[J]. J Integr Plant Biol, 2021, 63(3): 494-509.
doi: 10.1111/jipb.v63.3 URL |
[84] |
Isner JC, Begum A, Nuehse T, et al. KIN7 kinase regulates the vacuolar TPK1 K+ channel during stomatal closure[J]. Curr Biol, 2018, 28(3): 466-472.e4.
doi: 10.1016/j.cub.2017.12.046 URL |
[85] |
Pei D, Hua DP, Deng JP, et al. Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis[J]. Plant Cell, 2022, 34(7): 2708-2729.
doi: 10.1093/plcell/koac106 URL |
[86] |
Takahashi F, Suzuki T, Osakabe Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700): 235-238.
doi: 10.1038/s41586-018-0009-2 |
[87] |
Raitt DC, Posas F, Saito H. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway[J]. EMBO J, 2000, 19(17): 4623-4631.
doi: 10.1093/emboj/19.17.4623 pmid: 10970855 |
[88] |
Tatebayashi K, Yamamoto K, Tanaka K, et al. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway[J]. EMBO J, 2006, 25(13): 3033-3044.
doi: 10.1038/sj.emboj.7601192 pmid: 16778768 |
[89] |
Smokvarska M, Francis C, Platre MP, et al. A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants[J]. Curr Biol, 2020, 30(23): 4654-4664.e4.
doi: 10.1016/j.cub.2020.09.013 URL |
[90] |
Tang WX, Lin WW, Zhou X, et al. Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis[J]. Curr Biol, 2022, 32(3): 508-517.e3.
doi: 10.1016/j.cub.2021.11.031 URL |
[91] |
Zhou X, Lu J, Zhang YQ, et al. Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil[J]. Dev Cell, 2021, 56(7): 1030-1042.e6.
doi: 10.1016/j.devcel.2021.02.030 URL |
[92] |
Ariga H, Katori T, Tsuchimatsu T, et al. NLR locus-mediated trade-off between abiotic and biotic stress adaptation in Arabidopsis[J]. Nat Plants, 2017, 3: 17072.
doi: 10.1038/nplants.2017.72 URL |
[93] |
Li YQ, Gou MY, Sun Q, et al. Requirement of calcium binding, myristoylation, and protein-protein interaction for the Copine BON1 function in Arabidopsis[J]. J Biol Chem, 2010, 285(39): 29884-29891.
doi: 10.1074/jbc.M109.066100 URL |
[94] |
Bonny M, Hui X, Schweizer J, et al. C2-domain mediated nano-cluster formation increases calcium signaling efficiency[J]. Sci Rep, 2016, 6: 36028.
doi: 10.1038/srep36028 pmid: 27808106 |
[95] |
Chen WJ, Zhou HN, Xu F, et al. CAR modulates plasma membrane nano-organization and immune signaling downstream of RALF1-FERONIA signaling pathway[J]. New Phytol, 2023, 237(6): 2148-2162.
doi: 10.1111/nph.v237.6 URL |
[96] |
Tougane K, Komatsu K, Bhyan SB, et al. Evolutionarily conserved regulatory mechanisms of abscisic acid signaling in land plants: characterization of abscisic acid insensitive1-like type 2c protein phosphatase in the liverwort Marchantia polymorpha[J]. Plant Physiol, 2010, 152(3): 1529-1543.
doi: 10.1104/pp.110.153387 pmid: 20097789 |
[97] |
Lind C, Dreyer I, et al. Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure[J]. Curr Biol, 2015, 25(7): 928-935.
doi: 10.1016/j.cub.2015.01.067 pmid: 25802151 |
[98] |
Fujii H, Zhu JK. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress[J]. Proc Natl Acad Sci USA, 2009, 106(20): 8380-8385.
doi: 10.1073/pnas.0903144106 URL |
[99] |
Fujii H, Verslues PE, Zhu JK. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis[J]. Plant Cell, 2007, 19(2): 485-494.
doi: 10.1105/tpc.106.048538 URL |
[100] |
Nakashima K, Fujita Y, Kanamori N, et al. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy[J]. Plant Cell Physiol, 2009, 50(7): 1345-1363.
doi: 10.1093/pcp/pcp083 pmid: 19541597 |
[101] |
Wang PC, Xue L, Batelli G, et al. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action[J]. PNAS, 2013, 110(27): 11205-11210.
doi: 10.1073/pnas.1308974110 pmid: 23776212 |
[102] |
Wang PC, Zhao Y, Li ZP, et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response[J]. Mol Cell, 2018, 69(1): 100-112.e6.
doi: S1097-2765(17)30930-9 pmid: 29290610 |
[103] |
Chen K, Li GJ, Bressan RA, et al. Abscisic acid dynamics, signaling, and functions in plants[J]. J Integr Plant Biol, 2020, 62(1): 25-54.
doi: 10.1111/jipb.12899 |
[104] |
Vlad F, Rubio S, Rodrigues A, et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis[J]. Plant Cell, 2009, 21(10): 3170-3184.
doi: 10.1105/tpc.109.069179 URL |
[105] |
Umezawa T, Sugiyama N, Mizoguchi M, et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis[J]. PNAS, 2009, 106(41): 17588-17593.
doi: 10.1073/pnas.0907095106 pmid: 19805022 |
[106] |
Soon FF, Ng LM, Zhou XE, et al. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases[J]. Science, 2012, 335(6064): 85-88.
doi: 10.1126/science.1215106 URL |
[107] |
Lin Z, Li Y, Wang YB, et al. Initiation and amplification of SnRK2 activation in abscisic acid signaling[J]. Nat Commun, 2021, 12(1): 2456.
doi: 10.1038/s41467-021-22812-x pmid: 33911084 |
[108] | Umezawa T, Sugiyama N, Takahashi F, et al. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana[J]. Sci Signal, 2013, 6(270): rs8. |
[109] |
Wang PC, Hsu CC, Du YY, et al. Mapping proteome-wide targets of protein kinases in plant stress responses[J]. Proc Natl Acad Sci USA, 2020, 117(6): 3270-3280.
doi: 10.1073/pnas.1919901117 pmid: 31992638 |
[110] |
Furihata T, Maruyama K, Fujita Y, et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1[J]. Proc Natl Acad Sci USA, 2006, 103(6): 1988-1993.
doi: 10.1073/pnas.0505667103 pmid: 16446457 |
[111] |
Zhao Y, Chan Z, Gao J, et al. ABA receptor PYL9 promotes drought resistance and leaf senescence[J]. Proc Natl Acad Sci USA, 2016, 113(7): 1949-1954.
doi: 10.1073/pnas.1522840113 pmid: 26831097 |
[112] |
Geiger D, Scherzer S, Mumm P, et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair[J]. Proc Natl Acad Sci USA, 2009, 106(50): 21425-21430.
doi: 10.1073/pnas.0912021106 pmid: 19955405 |
[113] |
Yang X, Gavya S L, Zhou ZM, et al. Abscisic acid regulates stomatal production by imprinting a SnRK2 kinase-mediated phosphocode on the master regulator SPEECHLESS[J]. Sci Adv, 2022, 8(40): eadd2063.
doi: 10.1126/sciadv.add2063 URL |
[114] |
Li J, Wang XQ, Watson MB, et al. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase[J]. Science, 2000, 287(5451): 300-303.
doi: 10.1126/science.287.5451.300 pmid: 10634783 |
[115] |
Chong L, Xu R, Huang PC, et al. The tomato OST1-VOZ1 module regulates drought-mediated flowering[J]. Plant Cell, 2022, 34(5): 2001-2018.
doi: 10.1093/plcell/koac026 URL |
[116] |
Chen QC, Hu T, Li XH, et al. Phosphorylation of SWEET sucrose transporters regulates plant root: shoot ratio under drought[J]. Nat Plants, 2022, 8(1): 68-77.
doi: 10.1038/s41477-021-01040-7 |
[117] |
Liu C, Yu HS, Rao XL, et al. Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1[J]. Proc Natl Acad Sci USA, 2021, 118(5): e2010911118.
doi: 10.1073/pnas.2010911118 URL |
[118] |
Zhang H, Zhao Y, Zhu JK. Thriving under stress: how plants balance growth and the stress response[J]. Dev Cell, 2020, 55(5): 529-543.
doi: 10.1016/j.devcel.2020.10.012 pmid: 33290694 |
[119] |
Xu QY, Yin SJ, Ma Y, et al. Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2[J]. Proc Natl Acad Sci USA, 2020, 117(11): 6223-6230.
doi: 10.1073/pnas.1912754117 pmid: 32123097 |
[120] |
Qin P, Zhang GH, Hu BH, et al. Leaf-derived ABA regulates rice seed development via a transporter-mediated and temperature-sensitive mechanism[J]. Sci Adv, 2021, 7(3): eabc8873.
doi: 10.1126/sciadv.abc8873 URL |
[121] |
Zhang HL, Yu FF, Xie P, et al. A Gγ protein regulates alkaline sensitivity in crops[J]. Science, 2023, 379(6638): eade8416.
doi: 10.1126/science.ade8416 URL |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[3] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
[4] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[5] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[6] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[7] | 张红红, 方晓峰. 相分离调控植物胁迫感知和应答的研究进展[J]. 生物技术通报, 2023, 39(11): 44-53. |
[8] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[9] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
[10] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[11] | 关志秀, 汪燕, 梁成刚, 韦春玉, 黄娟, 陈庆富. 苦荞FtCBL基因的鉴定及对干旱与高钙胁迫的响应[J]. 生物技术通报, 2022, 38(8): 101-109. |
[12] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
[13] | 于国红, 刘朋程, 李磊, 李明哲, 崔海英, 郝洪波, 郭安强. 不同基因型马铃薯对干旱胁迫的生理响应[J]. 生物技术通报, 2022, 38(5): 56-63. |
[14] | 董亚茹, 赵东晓, 耿兵, 李云芝, 王照红. 桑树MnERF2的表达分析[J]. 生物技术通报, 2022, 38(11): 112-121. |
[15] | 张彤彤, 郑登俞, 吴忠义, 张中保, 于荣. 玉米NF-Y转录因子基因ZmNF-YB13响应干旱和盐胁迫的功能分析[J]. 生物技术通报, 2022, 38(10): 115-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||