生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 134-142.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0066

• 研究报告 • 上一篇    下一篇

大豆细胞质雄性不育弱恢复型杂种F1育性转变的转录组分析

白志元1(), 徐菲1,2, 杨午1,2, 王明贵1,2, 杨玉花1, 张海平1,2(), 张瑞军1,2()   

  1. 1.山西农业大学农业基因资源研究中心 农业农村部黄土高原作物基因资源与种质创制重点实验室,太原 030031
    2.山西农业大学农学院,太谷 030801
  • 收稿日期:2024-01-16 出版日期:2024-06-26 发布日期:2024-05-14
  • 通讯作者: 张海平,女,博士,研究员,研究方向:大豆种质资源基础与应用;E-mail: nkyzhp@126.com
    张瑞军,男,硕士,研究员,研究方向:大豆杂种优势基础与应用;E-mail: zrj013835@163.com
  • 作者简介:白志元,男,博士,副研究员,研究方向:大豆杂种优势基础与应用;E-mail: bzy923@163.com
  • 基金资助:
    山西省基础研究计划面上基金(202303021211085);山西农业大学优秀博士启动项目(2023BQ95);山西农业大学生物育种工程项目(YZGC147)

Transcriptome Analysis of Fertility Transformation in Weakly Restoring Hybrid F1 of Soybean Cytoplasmic Male Sterility

BAI Zhi-yuan1(), XU Fei1,2, YANG Wu1,2, WANG Ming-gui1,2, YANG Yu-hua1, ZHANG Hai-ping1,2(), ZHANG Rui-jun1,2()   

  1. 1. Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of Ministry of Agriculture and Rural Affairs, Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031
    2. College of Agriculture, Shanxi Agricultural University, Taigu 030801
  • Received:2024-01-16 Published:2024-06-26 Online:2024-05-14

摘要:

【目的】 探索大豆细胞质雄性不育弱恢复型杂种F1育性转变在RNA水平上的分子机制,以期从育性转变的角度为大豆细胞质雄性不育的分子机理提供有价值的信息。【方法】 以弱恢复型杂种F1(H3A×SXTH3)为研究对象,设置苗期短光照(植株育性不育)和正常光照(植株育性可育)处理,在盛花期分别采集不同大小的混合花芽进行转录组测序和RT-qPCR分析。【结果】 筛选出3 917个差异表达基因,苗期短光照处理后,2 134个基因下调表达,1 783个基因上调表达。对差异表达基因进行生物信息学分析,GO显著富集分析表明,碳水化合物代谢过程、跨膜转运活性和细胞外围等功能在育性转变中行使着主要生物学功能;KEGG通路显著富集分析表明,戊糖葡萄糖醛酸的相互转化、淀粉蔗糖代谢和植物昼夜节律等通路为育性转变的主要代谢通路。11个基因的RT-qPCR分析发现,大豆细胞质雄性不育相关基因和PPR基因参与了大豆细胞质雄性不育弱恢复型杂种F1育性转变过程。【结论】 推测大豆细胞质雄性不育弱恢复型杂种F1育性转变与植物昼夜节律、PPR和大豆细胞质雄性不育相关的线粒体、花粉壁发育、碳水化合物代谢、糖转运和活性氧代谢等基因的异常表达相关,当昼夜节律通路的关键基因变化,引起PPR基因和大豆细胞质雄性不育相关基因的表达水平变化,将会发生育性转变。

关键词: 大豆, 细胞质雄性不育, 杂种F1, 育性, 转录组测序

Abstract:

【Objective】 It is to explore the molecular mechanism of fertility transformation in weakly restoring hybrid F1 of soybean cytoplasmic male sterility at the RNA level, then to provide valuable information on the molecular mechanism of male sterility in soybean from the perspective of fertility transition.【Method】 Using weakly restoring hybrid F1(H3A× SXTH3)as the research object, and short light(plant fertility is sterile)and normal light(plant fertility is fertile)treatments were set up during the seedling stage. Mixed flower buds of different sizes were collected during the peak flowering period for transcriptome sequencing and quantitative real time PCR(RT-qPCR)analysis.【Result】 Total 3 917 differentially expressed genes were screened out. After short light treatment during the seedling stage, 2 134 genes were downregulated and 1 783 genes were upregulated. Bioinformatics analysis was conducted on differentially expressed genes, and gene ontology(GO)significant enrichment analysis showed that carbohydrate metabolic process, transmembrane transporter activity, and cell periphery functions played the main biological functions during fertility transition. The significant enrichment analysis of the kyoto encyclopedia of genes and genomes(KEGG)pathway showed that the main metabolic pathways for fertility transformation were pentose and glucuronate interconversions, starch and sucrose metabolism, and plant circadian rhythm. RT-qPCR analysis of 11 genes revealed that genes related to soybean cytoplasmic male sterility and pentatricopeptide repeats protein(PPR)were involved during fertility transformation of weakly restoring cytoplasmic male sterile hybrid F1 in soybean.【Conclusion】 It was speculated that the fertility transformation of weakly restoring hybrid F1 was related to abnormal expressions of genes related to plant circadian rhythm, PPR, and soybean cytoplasmic male sterility, such as mitochondrial, pollen wall development, carbohydrate metabolism, sugar transport, and reactive oxygen species metabolism. Key genes in the circadian rhythm pathway change cause changes in the expression levels of PPR genes and soybean cytoplasmic male sterility related genes, then fertility transformation will occur.

Key words: soybean, cytoplasmic male sterility, hybrid F1, fertility, transcriptome sequencing