生物技术通报 ›› 2024, Vol. 40 ›› Issue (7): 183-196.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0078
杜仲阳1(), 杨泽1, 梁梦静1, 刘义珍1, 崔红利1,2, 史达明1, 薛金爱1, 孙岩1, 张春辉1, 季春丽1(), 李润植1()
收稿日期:
2024-01-18
出版日期:
2024-07-26
发布日期:
2024-05-24
通讯作者:
李润植,男,博士,教授,研究方向:特色植物资源开发与利用;E-mail: rli2001@126.com;作者简介:
杜仲阳,女,硕士研究生,研究方向:特色植物资源开发与功能验证;E-mail: zhongyang0349@163.com
基金资助:
DU Zhong-yang1(), YANG Ze1, LIANG Meng-jing1, LIU Yi-zhen1, CUI Hong-li1,2, SHI Da-ming1, XUE Jin-ai1, SUN Yan1, ZHANG Chun-hui1, JI Chun-li1(), LI Run-zhi1()
Received:
2024-01-18
Published:
2024-07-26
Online:
2024-05-24
摘要:
【目的】 旨在探究纳米硒(SeNPs)对铅(Pb)胁迫烟草幼苗的生长、抗逆性、铅吸收和转运的影响,以揭示SeNPs的促生效应、富硒和阻滞铅吸收及转运的机制。【方法】 以普通烟草(Nicotiana tabacum)为研究对象,通过盆栽实验设置不同处理,包括低剂量(100 mg/L)和高剂量(200 mg/L)Pb胁迫,无机硒(Na2SeO3)、SeNPs处理和空白对照组。测定各处理组烟草幼苗的生物量、光合生理参数、抗氧化酶活性、脂质过氧化产物含量以及相关基因表达水平,分析铅和硒在植物体内的含量和分布。【结果】 与对照组相比,硒处理显著促进了烟草幼苗的生长和光合作用,SeNPs促生效应更显著。硒处理还增强了烟草幼苗的抗氧化酶(SOD、POD和APX等)活性和抗氧化物质(抗坏血酸和谷胱甘肽等)的含量,降低了脂质过氧化产物(H2O2和MDA)的积累。在铅胁迫条件下,硒处理可显著提高烟草幼苗中硒的含量,同时降低铅的吸收和转运率。【结论】 纳米硒能显著提高植物生物量,保护光合系统,激活抗氧化系统,阻滞铅吸收和转运,促进植物硒富集和改善植物对铅胁迫的抗性。
杜仲阳, 杨泽, 梁梦静, 刘义珍, 崔红利, 史达明, 薛金爱, 孙岩, 张春辉, 季春丽, 李润植. 纳米硒(SeNPs)缓解烟草幼苗铅胁迫和促生效应[J]. 生物技术通报, 2024, 40(7): 183-196.
DU Zhong-yang, YANG Ze, LIANG Meng-jing, LIU Yi-zhen, CUI Hong-li, SHI Da-ming, XUE Jin-ai, SUN Yan, ZHANG Chun-hui, JI Chun-li, LI Run-zhi. Effect of Nano-selenium(SeNPs)in Alleviating Lead Stress and Promoting Growth of Tobacco Seedlings[J]. Biotechnology Bulletin, 2024, 40(7): 183-196.
组别 Group | 1/2 Hoagland | Se(25 mg/L) | SeNPs(25 mg/L) | Pb(100 mg/L) | Pb(200 mg/L) |
---|---|---|---|---|---|
con | + | - | - | - | - |
se | + | + | - | - | - |
SeNPs | + | - | + | - | - |
pb-100 | + | - | - | + | - |
se-pb-100 | + | + | - | + | - |
SeNPs-pb-100 | + | - | + | + | - |
pb-200 | + | - | - | - | + |
se-pb-200 | + | + | - | - | + |
SeNPs-pb-200 | + | - | + | - | + |
表1 烟草幼苗的试验处理
Table 1 Experimental treatments for tobacco seedlings
组别 Group | 1/2 Hoagland | Se(25 mg/L) | SeNPs(25 mg/L) | Pb(100 mg/L) | Pb(200 mg/L) |
---|---|---|---|---|---|
con | + | - | - | - | - |
se | + | + | - | - | - |
SeNPs | + | - | + | - | - |
pb-100 | + | - | - | + | - |
se-pb-100 | + | + | - | + | - |
SeNPs-pb-100 | + | - | + | + | - |
pb-200 | + | - | - | - | + |
se-pb-200 | + | + | - | - | + |
SeNPs-pb-200 | + | - | + | - | + |
基因Gene | 引物序列 Primer sequence(5'-3') |
---|---|
NtPOD-F NtPOD-R | TCACTCTACCATCGCCATACTC TGCTGTTCTGCTGTCTCTTCT |
NtCAT-F NtCAT-R | TCTTGCCATTGATGCCAGTTG TCCTGCCTGCTTGAAGTTGT |
NtActin-F NtActin-R | CAAAGCAAGCCTACGCTCT ATACGAATGCCCCCGACT |
表2 RT-qPCR所用引物序列
Table 2 Primer sequences used in RT-qPCR
基因Gene | 引物序列 Primer sequence(5'-3') |
---|---|
NtPOD-F NtPOD-R | TCACTCTACCATCGCCATACTC TGCTGTTCTGCTGTCTCTTCT |
NtCAT-F NtCAT-R | TCTTGCCATTGATGCCAGTTG TCCTGCCTGCTTGAAGTTGT |
NtActin-F NtActin-R | CAAAGCAAGCCTACGCTCT ATACGAATGCCCCCGACT |
图1 不同剂量铅胁迫下喷施Se后烟草幼苗表型 图中上标为各处理组(表1)名称,下同
Fig. 1 Phenotype of tobacco seedlings sprayed with Se under different doses of lead stress The superscript in the figure is the name of each treatment listed in Table 1. The same below
组别 Group | 株高 Plant height/cm | 根长 Root length/cm | 总叶片鲜重 Total leaf fresh weight/g | 总叶片干重 Total leaf dry weight/g | 最大叶片鲜重 Maximum leaf fresh weight/g | 最大叶片干重 Maximum leaf dry weight/g | 茎秆鲜重 Stem fresh weight/g | 根鲜重 Root fresh weight/g |
---|---|---|---|---|---|---|---|---|
con | 26.13±0.63a | 18.46±2.99ab | 16.63±0.25a | 0.92±0.08a | 2.56±0.31a | 0.16±0.01a | 6.14±0.24a | 4.05±0.37a |
se | 24.25±0.96b | 20.58±1.24a | 16.16±0.85a | 0.87±0.03a | 2.61±0.3a | 0.16±0.01a | 6.13±0.3a | 4.17±0.09a |
SeNPs | 24.28±0.96b | 20.61±1.24a | 16.18±0.85a | 0.87±0.03a | 2.63±0.3a | 0.16±0.01a | 6.25±0.3a | 4.25±0.09a |
pb-100 | 23.38±2.29bc | 16.04±1.01cd | 14.32±0.39cd | 0.61±0.08bc | 2.53±0.49a | 0.13±0.01b | 5.45±0.49b | 2.69±0.58bc |
se-pb-100 | 23.88±0.25b | 17.06±1.33bc | 15.39±1.13abc | 0.68±0.02b | 2.53±0.26a | 0.13±0.01b | 5.92±0.17a | 2.95±0.28b |
SeNPs-pb-100 | 24.19±0.23b | 17.39±1.33bc | 15.68±1.12ab | 0.69±0.02b | 2.56±0.26a | 0.13±0.01b | 6.03±0.18a | 3±0.28b |
pb-200 | 21.38±1.8d | 14.56±2.14d | 13.95±0.75d | 0.54±0.01c | 2.33±0.3a | 0.12±0.01b | 5.17±0.09b | 1.82±0.61d |
se-pb-200 | 21.88±0.63cd | 17.64±1.15bc | 14.26±1.29cd | 0.66±0.04b | 2.39±0.31a | 0.13±0.01b | 5.21±0.43b | 2.18±0.47cd |
SeNPs-pb-200 | 22.14±0.64cd | 17.94±1.15bc | 14.55±1.29bcd | 0.67±0.04b | 2.42±0.31a | 0.13±0.01b | 5.31±0.43b | 2.22±0.48cd |
表3 硒处理对铅胁迫下烟草幼苗生长的影响
Table 3 Effects of Se treatment on the growths of tobacco seedlings under lead stress
组别 Group | 株高 Plant height/cm | 根长 Root length/cm | 总叶片鲜重 Total leaf fresh weight/g | 总叶片干重 Total leaf dry weight/g | 最大叶片鲜重 Maximum leaf fresh weight/g | 最大叶片干重 Maximum leaf dry weight/g | 茎秆鲜重 Stem fresh weight/g | 根鲜重 Root fresh weight/g |
---|---|---|---|---|---|---|---|---|
con | 26.13±0.63a | 18.46±2.99ab | 16.63±0.25a | 0.92±0.08a | 2.56±0.31a | 0.16±0.01a | 6.14±0.24a | 4.05±0.37a |
se | 24.25±0.96b | 20.58±1.24a | 16.16±0.85a | 0.87±0.03a | 2.61±0.3a | 0.16±0.01a | 6.13±0.3a | 4.17±0.09a |
SeNPs | 24.28±0.96b | 20.61±1.24a | 16.18±0.85a | 0.87±0.03a | 2.63±0.3a | 0.16±0.01a | 6.25±0.3a | 4.25±0.09a |
pb-100 | 23.38±2.29bc | 16.04±1.01cd | 14.32±0.39cd | 0.61±0.08bc | 2.53±0.49a | 0.13±0.01b | 5.45±0.49b | 2.69±0.58bc |
se-pb-100 | 23.88±0.25b | 17.06±1.33bc | 15.39±1.13abc | 0.68±0.02b | 2.53±0.26a | 0.13±0.01b | 5.92±0.17a | 2.95±0.28b |
SeNPs-pb-100 | 24.19±0.23b | 17.39±1.33bc | 15.68±1.12ab | 0.69±0.02b | 2.56±0.26a | 0.13±0.01b | 6.03±0.18a | 3±0.28b |
pb-200 | 21.38±1.8d | 14.56±2.14d | 13.95±0.75d | 0.54±0.01c | 2.33±0.3a | 0.12±0.01b | 5.17±0.09b | 1.82±0.61d |
se-pb-200 | 21.88±0.63cd | 17.64±1.15bc | 14.26±1.29cd | 0.66±0.04b | 2.39±0.31a | 0.13±0.01b | 5.21±0.43b | 2.18±0.47cd |
SeNPs-pb-200 | 22.14±0.64cd | 17.94±1.15bc | 14.55±1.29bcd | 0.67±0.04b | 2.42±0.31a | 0.13±0.01b | 5.31±0.43b | 2.22±0.48cd |
图2 Se对铅胁迫下烟草叶片叶绿素和类胡萝卜素的影响 数据进行Duncan检验,不同小写字母表示显著差异(P<0.05),下同
Fig. 2 Effects of Se on the chlorophyll and carotenoids in tobacco leaves under lead stress The data were tested by Duncan, and different lowercase letters indicated significant differences between treatments(P<0.05). The same below
图4 Se对铅胁迫下烟草叶片SOD、CAT、APX、POD和GR酶活以及GSH含量的影响
Fig. 4 Effects of Se on the enzyme activities of SOD, CAT, APX, POD, GR and GSH contents in the tobacco leaves under lead stress
图5 Se对铅胁迫下烟草叶片MDA、H2O2、淀粉和脯氨酸(Pro)含量的影响
Fig. 5 Effects of Se on the contents of MDA, H2O2, starch and proline(Pro)in the tobacco leaves under lead stress
组别 Group | 硒含量 Se concentration/(μg·g-1 FW) | 铅含量 Pb concentration/(μg·g-1 FW) | ||
---|---|---|---|---|
叶 Shoot | 根 Root | 叶 Shoot | 根 Root | |
con | - | - | - | - |
se | 307.4±5.53e | 86.4±1.55e | - | - |
SeNPs | 423.99±0.74c | 120.1±1.55c | - | - |
pb-100 | - | - | 88.76±1.37d | 472.02±7.29d |
se-pb-100 | 316.83±3.44d | 86.85±0.97d | 78.83±0.08e | 412.57±1.12e |
SeNPs-pb-100 | 452.3±3.39b | 127.12±0.95b | 69.97±0.91f | 375.75±4.1f |
pb-200 | - | - | 137.44±1.71a | 730.9±9.11a |
se-pb-200 | 313.76±1.69d | 89.85±0.62d | 113.76±1.69b | 612.64±4.77b |
SeNPs-pb-100 | 591.94±1.31a | 172.45±0.37a | 102.2±1.31c | 548.17±1.26c |
表4 Se对铅胁迫下烟草幼苗Se和Pb含量的影响
Table 4 Effects of Se on the contents of Se and Pb in tobacco seedlings under lead stress
组别 Group | 硒含量 Se concentration/(μg·g-1 FW) | 铅含量 Pb concentration/(μg·g-1 FW) | ||
---|---|---|---|---|
叶 Shoot | 根 Root | 叶 Shoot | 根 Root | |
con | - | - | - | - |
se | 307.4±5.53e | 86.4±1.55e | - | - |
SeNPs | 423.99±0.74c | 120.1±1.55c | - | - |
pb-100 | - | - | 88.76±1.37d | 472.02±7.29d |
se-pb-100 | 316.83±3.44d | 86.85±0.97d | 78.83±0.08e | 412.57±1.12e |
SeNPs-pb-100 | 452.3±3.39b | 127.12±0.95b | 69.97±0.91f | 375.75±4.1f |
pb-200 | - | - | 137.44±1.71a | 730.9±9.11a |
se-pb-200 | 313.76±1.69d | 89.85±0.62d | 113.76±1.69b | 612.64±4.77b |
SeNPs-pb-100 | 591.94±1.31a | 172.45±0.37a | 102.2±1.31c | 548.17±1.26c |
[1] | Riaz M, Kamran M, Fang YZ, et al. Boron supply alleviates cadmium toxicity in rice(Oryza sativa L.) by enhancing cadmium adsorption on cell wall and triggering antioxidant defense system in roots[J]. Chemosphere, 2021, 266: 128938. |
[2] | 丁亚丽, 廖敏, 方至萍, 等. 新建铅蓄电池集聚区对周边土壤环境的影响: 基于重金属空间特征[J]. 环境科学, 2019, 40(9): 4244-4252. |
Ding YL, Liao M, Fang ZP, et al. Impact of newly build lead-acid battery agglomeration area on the surrounding soil environment: a study based on the spatial characteristics of heavy metals[J]. Environ Sci, 2019, 40(9): 4244-4252. | |
[3] | 李佳凌. 建筑垃圾堆放下周围土壤环境污染效果及治理模式研究[J]. 环境科学与管理, 2021, 46(3): 79-83. |
Li JL. Environmental pollution effect and treatment mode of surrounding soil under construction waste pile[J]. Environ Sci Manag, 2021, 46(3): 79-83. | |
[4] | Jin ZM, Deng SQ, Wen YC, et al. Application of Simplicillium chin-ense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils[J]. Sci Total Environ, 2019, 697: 134148. |
[5] |
Rayman MP. Selenium and human health[J]. Lancet, 2012, 379(9822): 1256-1268.
doi: 10.1016/S0140-6736(11)61452-9 pmid: 22381456 |
[6] | 朱善良. 硒的生物学作用及其研究进展[J]. 生物学通报, 2004, 39(6): 6-8. |
Zhu SL. Biological function of selenium and its research progress[J]. Bull Biol, 2004, 39(6): 6-8. | |
[7] | 昝亚玲, 王朝辉, 毛晖, 等. 施用硒、锌、铁对玉米和大豆产量与营养品质的影响[J]. 植物营养与肥料学报, 2010, 16(1): 252-256. |
Zan YL, Wang ZH, Mao H, et al. Effect of Se, Zn and Fe application on yield and nutritional quality of maize and soybean[J]. Plant Nutr Fertil Sci, 2010, 16(1): 252-256. | |
[8] | 悦飞雪, 李继伟, 王艳芳, 等. 不同基因型烤烟对镉、铅富集特征评价[J]. 江苏农业科学, 2019, 47(8): 105-111, 116. |
Yue FX, Li JW, Wang YF, et al. Evaluation of accumulation characteristics of cadmium and lead in tobacco with different genotypes[J]. Jiangsu Agric Sci, 2019, 47(8): 105-111, 116. | |
[9] | 何士敏, 杨振东. 硒浸种对沙棘种子活力及萌发期几种酶活性的影响[J]. 种子, 2014, 33(2): 39-42, 46. |
He SM, Yang ZD. The influence of the selenium concentration on the vigor and enzyme activity during the germination stage of seabuckthorn seed[J]. Seed, 2014, 33(2): 39-42, 46. | |
[10] | 张文博, 张建华. 富硒液体肥对花生产量及品质的影响[J]. 河北农业科学, 2007, 11(6): 42-43. |
Zhang WB, Zhang JH. Effects of liquid selenium fertilizer on the yield and quality of peanut[J]. J Hebei Agric Sci, 2007, 11(6): 42-43. | |
[11] | 姚莉, 段玉峰. 微量元素硒与生物体健康[J]. 广东微量元素科学, 2004, 11(2): 8-13. |
Yao L, Duan YF. Selenium anu health of biological body[J]. Trace Elem Sci, 2004, 11(2): 8-13. | |
[12] | 吴永尧, 彭振坤, 罗泽民. 硒的多重生物学功能及对人和动物健康的影响[J]. 湖南农业大学学报, 1997, 23(3): 294-300. |
Wu YY, Peng ZK, Luo ZM. Multi-biological functions of selenium to the health of human beings and animals[J]. J Hunan Agric Univ, 1997, 23(3): 294-300. | |
[13] | Bakhtiari M, Raeisi Sadati F, Raeisi Sadati SY. Foliar application of silicon, selenium, and zinc nanoparticles can modulate lead and cadmium toxicity in sage(Salvia officinalis L.) plants by optimizing growth and biochemical status[J]. Environ Sci Pollut Res Int, 2023, 30(18): 54223-54233. |
[14] | 薛泰麟, 侯少范, 谭见安, 等. 硒在高等植物体内的抗氧化作用 I.硒对过氧化作用的抑制效应及酶促机制的探讨[J]. 科学通报, 1993, 38(3): 274-277. |
Xue TL, Hou SF, Tan JA, et al. Antioxidant effect of selenium in higher plants I. Inhibitory effect of selenium on peroxidation and its enzymatic mechanism[J]. Cinese Sci Bull, 1993, 38(3): 274-277. | |
[15] | Martins JPR, Conde LT, Falqueto AR, et al. Selenium biofortified Aechmea blanchetiana(Bromeliaceae)can resist lead-induced toxicity during in vitro culture[J]. Acta Physiol Plant, 2021, 43(11): 149. |
[16] | 秦成, 裴红宾, 吴晓薇, 等. 外源硒对铅污染下荞麦生长及生理特性的影响[J]. 中国生态农业学报, 2015, 23(4): 447-453. |
Qin C, Pei HB, Wu XW, et al. Effect of exogenous selenium on growth and development of buckwheat under plumbum stress[J]. Chin J Eco Agric, 2015, 23(4): 447-453. | |
[17] | 周诗悦, 李茉, 周晨霓, 等. 硒在“土壤-作物-食品-人体” 食物链中的流动[J]. 食品科学, 2023, 44(9): 231-244. |
Zhou SY, Li M, Zhou CN, et al. Flow of selenium in the “soil-crop-food-human” chain[J]. Food Sci, 2023, 44(9): 231-244. | |
[18] |
Wadhwani SA, Shedbalkar UU, Singh R, et al. Biogenic selenium nanoparticles: current status and future prospects[J]. Appl Microbiol Biotechnol, 2016, 100(6): 2555-2566.
doi: 10.1007/s00253-016-7300-7 pmid: 26801915 |
[19] | Hosnedlova B, Kepinska M, Skalickova S, et al. Nano-selenium and its nanomedicine applications: a critical review[J]. Int J Nanomedicine, 2018, 13: 2107-2128. |
[20] | 刘梦兰. 两种不同硒肥对水稻籽粒硒积累及品质相关性状的影响[D]. 扬州: 扬州大学, 2021. |
Liu ML. Effects of two different selenium fertilizers on grain selenium accumulation and quality-related traits of rice[D]. Yangzhou: Yangzhou University, 2021. | |
[21] | 孙鹏波, 王志军, 格根图, 等. 喷施纳米硒对紫花苜蓿产量、营养品质和硒含量的影响[J]. 中国草地学报, 2023, 45(8): 79-87. |
Sun PB, Wang ZJ, Ge GT, et al. Effects of nano-selenium spraying on yield, nutritional quality, and selenium content of alfalfa[J]. Chin J Grassland, 2023, 45(8): 79-87. | |
[22] | 张生荣. 纳米硒在植物体内的迁移转化及缓解植物镉胁迫的机理研究[D]. 济南: 山东大学, 2019. |
Zhang SR. Mechanism of migration and transformation of nano selenium and mitigates cadmium stress in plants[D]. Jinan: Shandong University, 2019. | |
[23] | Liu YP, Liu R, Li FF, et al. Nano-selenium repaired the damage caused by fungicides on strawberry flavor quality and antioxidant capacity by regulating ABA biosynthesis and ripening-related transcription factors[J]. Pestic Biochem Physiol, 2024, 198: 105753. |
[24] | Setty J, Samant SB, Yadav MK, et al. Beneficial effects of bio-fabricated selenium nanoparticles as seed nanopriming agent on seed germination in rice(Oryza sativa L.)[J]. Sci Rep, 2023, 13: 22349. |
[25] | 赵爽, 许自成, 孙曙光, 等. 重金属对烟草生长发育及品质影响的研究进展[J]. 甘肃农业大学学报, 2012, 47(2): 62-67, 71. |
Zhao S, Xu ZC, Sun SG, et al. Literature review on effects of heavy metals on tobacco physiological properties, growth and quality[J]. J Gansu Agric Univ, 2012, 47(2): 62-67, 71. | |
[26] | 淡俊豪, 齐绍武, 朱益, 等. 生石灰对铅污染酸性植烟土壤理化性质和烟草铅含量的影响[J]. 江苏农业科学, 2018, 46(19): 71-75. |
Dan JH, Qi SW, Zhu Y, et al. Effects of quicklime on physical and chemical properties of Pb-polluted acid tobacco soil and lead content of tobacco[J]. Jiangsu Agric Sci, 2018, 46(19): 71-75. | |
[27] | 文晓阳, 饶巍, 李春萍, 等. 铅胁迫对不同基因型烟草铅吸收、运转及积累的影响[J]. 山东农业科学, 2022, 54(9): 106-112. |
Wen XY, Rao W, Li CP, et al. Effects of lead stress on lead absorption, translocation and accumulation of different genotypes of tobacco[J]. Shandong Agric Sci, 2022, 54(9): 106-112. | |
[28] | Angelova V, Ivanov K, Ivanova R. Effect of chemical forms of lead, cadmium, and zinc in polluted soils on their uptake by tobacco[J]. J Plant Nutr, 2004, 27(5): 757-773. |
[29] | 朱诗苗, 宋杭霖, 张丽, 等. 铅胁迫对烟草生长及生理生化指标的影响[J]. 植物生理学报, 2018, 54(3): 465-472. |
Zhu SM, Song HL, Zhang L, et al. Effect of lead stress on growth and physio-biochemical indices of tobacco[J]. Plant Physiol J, 2018, 54(3): 465-472. | |
[30] | 邹琦. 植物生理生化实验指导[M]. 北京: 中国农业出版社, 1995. |
Zou Q. Guidance of plant physiological and biochemical experiments[M]. Beijing: China Agriculture Press, 1995. | |
[31] | Huang JL, Li ZY, Mao JY, et al. Contamination and health risks brought by arsenic, lead and cadmium in a water-soil-plant system nearby a non-ferrous metal mining area[J]. Ecotoxicol Environ Saf, 2024, 270: 115873. |
[32] | 秦芳, 胥晓, 刘刚, 等. 桑树(Morus alba)幼苗对铅污染的生理耐性和积累能力的性别差异[J]. 环境科学学报, 2014, 34(10): 2615-2623. |
Qin F, Xu X, Liu G, et al. Sexual differences in physiological tolerance and accumulation capacity against lead pollution in Morus alba seedlings[J]. Acta Sci Circumstantiae, 2014, 34(10): 2615-2623. | |
[33] | 杨刚, 伍钧, 唐亚. 铅胁迫下植物抗性机制的研究进展[J]. 生态学杂志, 2005, 24(12): 1507-1512. |
Yang G, Wu J, Tang Y. Research advances in plant resistance mechanisms under lead stress[J]. Chin J Ecol, 2005, 24(12): 1507-1512. | |
[34] | 刘素纯, 萧浪涛, 廖柏寒, 等. 铅胁迫对黄瓜幼苗抗氧化酶活性及同工酶的影响[J]. 应用生态学报, 2006, 17(2): 300-304. |
Liu SC, Xiao LT, Liao BH, et al. Effects of lead stress on anti-oxidative enzyme activities and isoenzymes in cucumber seedlings[J]. Chin J Appl Ecol, 2006, 17(2): 300-304. | |
[35] | Gupta DK, Huang HG, Yang XE, et al. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione[J]. J Hazard Mater, 2010, 177(1/2/3): 437-444. |
[36] |
Krzesłowska M, Rabęda I, Basińska A, et al. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb[J]. Environ Pollut, 2016, 214: 354-361.
doi: S0269-7491(16)30285-8 pmid: 27107260 |
[37] | Brunet J, Varrault G, Zuily-Fodil Y, et al. Accumulation of lead in the roots of grass pea(Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots[J]. Chemosphere, 2009, 77(8): 1113-1120. |
[38] | Singh R, Tripathi RD, Dwivedi S, et al. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system[J]. Bioresour Technol, 2010, 101(9): 3025-3032. |
[39] |
侯晓龙, 蔡丽平, 韩航, 等. 铅胁迫对百喜草叶绿素荧光特性及酶活性的影响[J]. 草业学报, 2017, 26(3): 142-148.
doi: 10.11686/cyxb2016159 |
Hou XL, Cai LP, Han H, et al. Effect of lead stress on the chlorophyll fluorescence characteristics and antioxidative enzyme activities of Paspalum notatum[J]. Acta Prataculturae Sin, 2017, 26(3): 142-148. | |
[40] | Saman RU, Shahbaz M, Maqsood MF, et al. Foliar application of ethylenediamine tetraacetic acid(EDTA)improves the growth and yield of brown mustard(Brassica juncea)by modulating photosynthetic pigments, antioxidant defense, and osmolyte production under lead(Pb)stress[J]. Plants, 2022, 12(1): 115. |
[41] | Guerrero B, Llugany M, Palacios O, et al. Dual effects of different selenium species on wheat[J]. Plant Physiol Biochem, 2014, 83: 300-307. |
[42] | 江行玉, 赵可夫. 植物重金属伤害及其抗性机理[J]. 应用与环境生物学报, 2001, 7(1): 92-99. |
Jiang XY, Zhao KF. Mechanism of heavy metal injury and resistance of plants[J]. Chin J Appl Environ Biol, 2001, 7(1): 92-99. | |
[43] | 李敏, 高俊全, 李筱薇. 硒对铅毒性的拮抗作用[J]. 卫生研究, 2005, 34(3): 375-377. |
Li M, Gao JQ, Li XW. Antagonistic action of selenium against the toxicity of lead[J]. J Hyg Res, 2005, 34(3): 375-377. | |
[44] | Feng RW, Wei CY, Tu SX. The roles of selenium in protecting plants against abiotic stresses[J]. Environ Exp Bot, 2013, 87: 58-68. |
[45] | Pourrut B, Jean S, Silvestre J, et al. Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress[J]. Mutat Res, 2011, 726(2): 123-128. |
[46] | 张彩虹, 于秀针, 姜鲁艳, 等. 硒对低温胁迫下番茄幼苗叶片抗氧化系统的影响[J]. 新疆农业科学, 2014, 51(6): 1083-1089. |
Zhang CH, Yu XZ, Jiang LY, et al. The effects of Se on the antioxidant system of tomato seedling leaves under low temperature stress[J]. Xinjiang Agric Sci, 2014, 51(6): 1083-1089. | |
[47] |
韩敏, 曹逼力, 刘树森, 等. 低温胁迫下番茄幼苗根穗互作对其抗坏血酸—谷胱甘肽循环的影响[J]. 园艺学报, 2019, 46(1): 65-73.
doi: 10.16420/j.issn.0513-353x.2018-0110 |
Han M, Cao BL, Liu SS, et al. Effects of rootstock and scion interactions on ascorbate-glutathione cycle in tomato seedlings under low temperature stress[J]. Acta Hortic Sin, 2019, 46(1): 65-73.
doi: 10.16420/j.issn.0513-353x.2018-0110 |
|
[48] | Bai KK, Hong BH, He JL, et al. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres[J]. Int J Nanomedicine, 2017, 12: 4527-4539. |
[49] | Mroczek-Zdyrska M, Wójcik M. The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants[J]. Biol Trace Elem Res, 2012, 147(1/2/3): 320-328. |
[50] | Azimi F, Oraei M, Gohari G, et al. Chitosan-selenium nanoparticles(Cs-Se NPs)modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress[J]. Plant Physiol Biochem, 2021, 167: 257-268. |
[51] | 史芹, 高新楼. 不同时期喷施富硒液对小麦籽粒硒含量及产量的影响[J]. 山地农业生物学报, 2011, 30(6): 562-564. |
Shi Q, Gao XL. Effect of application time of selenium fertilizer on wheat yield and grain selenium content[J]. J Mt Agric Biol, 2011, 30(6): 562-564. |
[1] | 周宏丹, 罗晓萍, 涂米雪, 李忠光. 植物褪黑素:植物应答非生物胁迫的新兴信号分子[J]. 生物技术通报, 2024, 40(3): 41-51. |
[2] | 沈天虹, 齐孝博, 赵瑞丰, 马欣荣. 微藻盐胁迫响应分子机制研究进展[J]. 生物技术通报, 2024, 40(3): 89-99. |
[3] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[4] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[5] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[6] | 张龙喜, 吕琳, 张欢欢, 周金成, 车午男, 董辉. RNAi技术在寄生蜂中的应用研究进展[J]. 生物技术通报, 2023, 39(12): 99-108. |
[7] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
[8] | 刘自然, 甄珍, 陈强, 李玥莹, 王泽, 逄洪波. 植物响应Cd胁迫研究进展[J]. 生物技术通报, 2022, 38(6): 13-26. |
[9] | 雷春霞, 李灿辉, 陈永坤, 龚明. 马铃薯块茎形成的生理生化基础和分子机制[J]. 生物技术通报, 2022, 38(4): 44-57. |
[10] | 李倩, 江文波, 王玉祥, 张博, 庞永珍. 苜蓿抗旱性分子研究进展[J]. 生物技术通报, 2021, 37(8): 243-252. |
[11] | 刘海光, 罗振, 董合忠. 植物硝态氮吸收和转运的调控研究进展[J]. 生物技术通报, 2021, 37(6): 192-201. |
[12] | 冯连杰, 安文静, 刘迪, 刘亚菲, 王凯婕, 梁卫红. 水稻表皮毛发育相关基因研究进展[J]. 生物技术通报, 2021, 37(6): 236-243. |
[13] | 武杞蔓, 张金梅, 李玥莹, 张颖. 有益微生物菌肥对农作物的作用机制研究进展[J]. 生物技术通报, 2021, 37(5): 221-230. |
[14] | 付严松, 李宇聪, 徐志辉, 邵佳慧, 刘云鹏, 宣伟, 张瑞福. 根际促生菌调控植物根系发育的信号与分子机制研究进展[J]. 生物技术通报, 2020, 36(9): 42-48. |
[15] | 宫伟, 余健源, 张曦, 单晓昳. 硝酸根调控植物开花和产量分子机制的研究进展[J]. 生物技术通报, 2020, 36(8): 162-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||