生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 236-247.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0270
李炯珊1,2(), 杨泽1,2, 闫星1,2, 刘义珍1,2, 郭宇双1,2, 薛金爱1,2, 孙希平1,2(), 季春丽1,2(), 张春辉1,2, 李润植1,2
收稿日期:
2024-03-19
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
孙希平,女,博士,副教授,研究方向:作物遗传育种;E-mail: sxpljj@126.com;作者简介:
李炯珊,女,硕士研究生,研究方向:作物生物技术与组学;E-mail: lijiongshan_193@163.com
基金资助:
LI Jiong-shan1,2(), YANG Ze1,2, YAN Xing1,2, LIU Yi-zhen1,2, GUO Yu-shuang1,2, XUE Jin-ai1,2, SUN Xi-ping1,2(), JI Chun-li1,2(), ZHANG Chun-hui1,2, LI Run-zhi1,2
Received:
2024-03-19
Published:
2024-11-26
Online:
2024-12-19
摘要:
【目的】 表征四尾栅藻(Desmodesmus subspicatus)对草甘膦耐受性以及吸附或降解效应,评估施用四尾栅藻提高大豆(Glycine max)幼苗草甘膦抗性和促生作用以及清除根际草甘膦残留的效果,为解析微藻吸附或降解草甘膦等有机磷农药作用机制提供新思路。【方法】 向四尾栅藻中施加不同剂量草甘膦,连续培养5 d,检测四尾栅藻生长,以及光合参数和培养液中草甘膦残留量。向大豆幼苗水培液中加入不同剂量草甘膦,连续培养7 d,检测大豆幼苗生长和光合参数。在草甘膦胁迫的大豆幼苗水培液中加入四尾栅藻藻液,连续培养14 d,检测大豆幼苗生理参数、草甘膦含量和水培液中草甘膦残留量。【结果】 四尾栅藻对草甘膦有一定耐受性,在100 mg/L草甘膦胁迫下能维持有效生长。四尾栅藻连续培养5 d,培养液添加的草甘膦清除率达72.26%。草甘膦胁迫显著抑制大豆幼苗生长。在草甘膦胁迫下,施用四尾栅藻使大豆幼苗株高、根长、鲜重和干重分别比草甘膦胁迫的大豆幼苗最高提高15.98%、49.03%、49.20%和25.63%。相似地,大豆幼苗叶绿素荧光参数Y(II)、ETR和Fv/Fm值升高,以及NPQ值降低。与对照相比,施用四尾栅藻显著降低大豆幼苗和水培液中草甘膦残留26.3%和34.6%。【结论】 四尾栅藻细胞可大量吸附或降解草甘膦。施用四尾栅藻能有效缓解草甘膦胁迫对大豆幼苗光合作用的损害,且能有效降低大豆幼苗对草甘膦的吸收和富集,进而促进大豆幼苗生长和阻滞草甘膦残留的迁移。
李炯珊, 杨泽, 闫星, 刘义珍, 郭宇双, 薛金爱, 孙希平, 季春丽, 张春辉, 李润植. 四尾栅藻提高大豆草甘膦抗性及促生效应分析[J]. 生物技术通报, 2024, 40(11): 236-247.
LI Jiong-shan, YANG Ze, YAN Xing, LIU Yi-zhen, GUO Yu-shuang, XUE Jin-ai, SUN Xi-ping, JI Chun-li, ZHANG Chun-hui, LI Run-zhi. Analysis of Increasing Glyphosate Resistance and Growth-promoting Effects in Soybean by Desmodesmus subspicatus[J]. Biotechnology Bulletin, 2024, 40(11): 236-247.
处理 Treatment | 培养液及微藻或大豆 Medium and microalga or soybean | 草甘膦浓度Glyphosate concentration/(mg·L-1) |
---|---|---|
DS0 | BG11+四尾栅藻(D. subspica-tus) | 0 |
DS50 | 50 | |
DS100 | 100 | |
DS200 | 200 | |
BG100 | BG11 | 100 |
GM0 | Hoagland+大豆(G. max) | 0 |
GM5 | 5 | |
GM10 | 10 | |
GM20 | 20 | |
GM50 | 50 | |
GM100 | 100 | |
GM-DS0 | Hoagland+大豆(G. max)+四尾栅藻(D. subspicatus) | 0 |
GM-DS10 | 10 | |
GM-DS20 | 20 | |
GM-DS50 | 50 | |
HG50 | Hoagland | 50 |
表1 草甘膦胁迫四尾栅藻和大豆幼苗的处理
Table 1 Glyphosate treatments on D. subspicatus and soybean seedlings
处理 Treatment | 培养液及微藻或大豆 Medium and microalga or soybean | 草甘膦浓度Glyphosate concentration/(mg·L-1) |
---|---|---|
DS0 | BG11+四尾栅藻(D. subspica-tus) | 0 |
DS50 | 50 | |
DS100 | 100 | |
DS200 | 200 | |
BG100 | BG11 | 100 |
GM0 | Hoagland+大豆(G. max) | 0 |
GM5 | 5 | |
GM10 | 10 | |
GM20 | 20 | |
GM50 | 50 | |
GM100 | 100 | |
GM-DS0 | Hoagland+大豆(G. max)+四尾栅藻(D. subspicatus) | 0 |
GM-DS10 | 10 | |
GM-DS20 | 20 | |
GM-DS50 | 50 | |
HG50 | Hoagland | 50 |
图1 不同剂量草甘膦胁迫下四尾栅藻在第0、2和5天的生长状况(A)及藻液OD680值(B) DS:四尾栅藻;阿拉伯数字:草甘膦剂量(mg/L)。下同
Fig. 1 Growth(A)and OD680 values(B)of D. subspi-catus on day 0, 2 and 5 under glyphosate stress at different dosages DS: D. subspicatus. Numbers: Glyphosate dose(mg/L). The same below
图2 草甘膦处理的大豆幼苗第7天生长表型 A:不同处理组大豆幼苗水培培养生长表型;B:不同处理大豆幼苗地上及地下部生长情况;GM:大豆;阿拉伯数字:草甘膦剂量(mg/L)。下同
Fig. 2 Growth of soybean seedlings after day 7 of cultivation under glyphosate stresses A: Hydroponic culture growth phenotypes of soybean seedlings in different treatment groups; B: aboveground and belowground growth of soybean seedlings in different treatments. GM: Soybean. Numbers: Glyphosate dose(mg/L). The same below
图3 不同剂量草甘膦胁迫下大豆幼苗株高、根长、鲜重和干重 不同小写字母表示差异显著(P<0.05)。下同
Fig. 3 Plant height, root length, fresh weight and dry weight of soybean seedlings under different dosages of glyphosate stresses Different letters indicate significant differences among treatment at 0.05 level(P<0.05). The same below
图4 四尾栅藻对草甘膦胁迫下大豆幼苗生理指标株高、根长、鲜重、干重的影响 GM-DS:大豆+四尾栅藻
Fig. 4 Effects of D. subspicatus on the plant heights, root lengths, fresh weights and dry weights of soybean seedlings under glyphosate stresses GM-DS: Soybean+ D. subspicatus
图5 不同剂量草甘膦胁迫培养最后1天四尾栅藻和大豆色素积累量 A:不同剂量草甘膦胁迫培养第5天四尾栅藻色素积累量;B:不同剂量草甘膦胁迫培养第7天大豆色素积累量
Fig. 5 Accumulative pigment contents in D. subspicatus and soybean seedlings at the last day of cultivation under different glyphosate stresses A: Pigment levels in D. subspicatus after 5 d of cultivation under different glyphosate stresses. B: Pigment contents in soybean seedlings after 7 d of cultivation under different dosages of glyphosate stresses
图6 四尾栅藻对草甘膦胁迫下大豆幼苗光合色素含量的影响
Fig. 6 Effects of D. subspicatus on the photosynthetic pigment contents in soybean seedlings under different dosages of glyphosate stresses
图7 四尾栅藻对不同剂量草甘膦胁迫下大豆幼苗叶绿素荧光参数的影响
Fig. 7 Impacts of D. subspicatus on the chlorophyll fluorescence parameters of soybean seedlings under different dosages of glyphosate stresses
处理 Treatment | 草甘膦施加量 Glyphosate dosage/(mg·L-1) | 藻液草甘膦残留量 Glyphosate residual content in the culture solution/(mg·L-1) | 去除率 Removal rate/% |
---|---|---|---|
DS0 | 0 | 0d | 0d |
DS50 | 50 | 16.339±0.464c | 64.49b |
DS100 | 100 | 24.915±2.190b | 72.26a |
BG100 | 100 | 97.168±1.306a | 2.83c |
表2 连续培养5 d各处理藻液草甘膦残留量
Table 2 Glyphosate content in the culture solution collected from the microalgal cultures at day 5 of culture of D. subspicatus under glyphosate treatment
处理 Treatment | 草甘膦施加量 Glyphosate dosage/(mg·L-1) | 藻液草甘膦残留量 Glyphosate residual content in the culture solution/(mg·L-1) | 去除率 Removal rate/% |
---|---|---|---|
DS0 | 0 | 0d | 0d |
DS50 | 50 | 16.339±0.464c | 64.49b |
DS100 | 100 | 24.915±2.190b | 72.26a |
BG100 | 100 | 97.168±1.306a | 2.83c |
处理 Treatment | 草甘膦施加量 Glyphosate dosage/(mg·L-1) | 水培液草甘膦残留量 Glyphosate residual content in the culture solution/(mg·L-1) | 去除率 Removal rate/% |
---|---|---|---|
GM0 | 0 | 0h | 0f |
GM10 | 10 | 2.132±0.224f | 76.50c |
GM20 | 20 | 4.481±0.473d | 75.42d |
GM50 | 50 | 11.182±0.701b | 75.46d |
GM-DS0 | 0 | 0h | 0f |
GM-DS10 | 10 | 1.395±0.135g | 83.87a |
GM-DS20 | 20 | 3.059±0.146e | 82.53a |
GM-DS50 | 50 | 9.524±0.531c | 78.77b |
HG50 | 50 | 48.912±0.223a | 2.18e |
表3 草甘膦和四尾栅藻处理下培养14 d的大豆幼苗水培液草甘膦残留量
Table 3 Glyphosate residual content in the glyphosate- and microalgal cell-added soybean seedlings culture solutions at day14 of cultivation
处理 Treatment | 草甘膦施加量 Glyphosate dosage/(mg·L-1) | 水培液草甘膦残留量 Glyphosate residual content in the culture solution/(mg·L-1) | 去除率 Removal rate/% |
---|---|---|---|
GM0 | 0 | 0h | 0f |
GM10 | 10 | 2.132±0.224f | 76.50c |
GM20 | 20 | 4.481±0.473d | 75.42d |
GM50 | 50 | 11.182±0.701b | 75.46d |
GM-DS0 | 0 | 0h | 0f |
GM-DS10 | 10 | 1.395±0.135g | 83.87a |
GM-DS20 | 20 | 3.059±0.146e | 82.53a |
GM-DS50 | 50 | 9.524±0.531c | 78.77b |
HG50 | 50 | 48.912±0.223a | 2.18e |
处理 Treatment | 草甘膦施加量Glyphosate dosage/(mg·L-1) | 叶片草甘膦残留量Glyphosate residual content/(μg·g-1) |
---|---|---|
GM0 | 0 | 0 |
GM10 | 10 | 0.379±0.061d |
GM20 | 20 | 1.045±0.307c |
GM50 | 50 | 5.478±0.589a |
GM-DS0 | 0 | 0 |
GM-DS10 | 10 | 0.287±0.061d |
GM-DS20 | 20 | 0.912±0.123c |
GM-DS50 | 50 | 4.028±0.205b |
表4 在草甘膦和四尾栅藻处理下培养14 d的大豆幼苗叶片草甘膦含量
Table 4 Glyphosate contents in the leaves of soybean seedlings cultivated in the glyphosate and microalgal cell-added culture solutions at day 14 of cultivation
处理 Treatment | 草甘膦施加量Glyphosate dosage/(mg·L-1) | 叶片草甘膦残留量Glyphosate residual content/(μg·g-1) |
---|---|---|
GM0 | 0 | 0 |
GM10 | 10 | 0.379±0.061d |
GM20 | 20 | 1.045±0.307c |
GM50 | 50 | 5.478±0.589a |
GM-DS0 | 0 | 0 |
GM-DS10 | 10 | 0.287±0.061d |
GM-DS20 | 20 | 0.912±0.123c |
GM-DS50 | 50 | 4.028±0.205b |
[1] | Modesto KA, Martinez CBR. Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus[J]. Chemosphere, 2010, 78(3): 294-299. |
[2] | Śliwińska-Wilczewska S, Sylwestrzak Z, Maculewicz J, et al. The effects of allelochemicals and selected anthropogenic substances on the diatom Bacillaria paxillifera[J]. Edukacja Biologiczna I Środowiskowa, 2016, 1: 21-27. |
[3] | Woźniak B, Dera J, Ficek D, et al. Dependence of the photosynthesis quantum yield in oceans on environmental factors[J]. Oceanologia, 2002, 44(4): 439-459 |
[4] | Pieniazek D, Bukowska B, Duda W. Glyphosate--a non-toxic pesticide?[J]. Med Pr, 2003, 54(6): 579-583. |
[5] | 陈楸健. 微生物与生物炭协同修复草甘膦的效果与修复机理研究[D]. 苏州: 苏州科技大学, 2019. |
Chen QJ. Study on the effects and mechanism of glyphosate remediation by microorganism and biochar[D]. Suzhou: Suzhou University of Science and Technology, 2019. | |
[6] | 林永东, 孙彦龙, 郑彤, 等. MnO2/Al2O3吸附草甘膦及微波紫外耦合降解再生工艺[J]. 环境工程学报, 2015, 9(4): 1815-1822. |
Lin YD, Sun YL, Zheng T, et al. MnO2 /Al2O3 adsorption of glyphosate and microwave UV coupling degradation and regeneration process[J]. Chin J Environ Eng, 2015, 9(4): 1815-1822 | |
[7] | 周长印. 改性聚苯乙烯树脂制备及吸附/氧化去除水中草甘膦的研究[D]. 青岛: 青岛科技大学, 2018. |
Zhou CY. Removal of glyphosate from aqueous solution by modified polystyrene resin[D]. Qingdao: Qingdao University of Science & Technology, 2018. | |
[8] | 杨昊博, 接伟光, 林厚泽, 等. 微生物降解大豆农药残留研究现状[J]. 粮食与油脂, 2023, 36(5): 13-18. |
Yang HB, Jie WG, Lin HZ, et al. Research status of microbial degradation of pesticide residues in soybean[J]. Cereals Oils, 2023, 36(5): 13-18. | |
[9] | Wang X, Balamurugan S, Liu SF, et al. Hydrolysis of organophosphorus by diatom purple acid phosphatase and sequential regulation of cell metabolism[J]. J Exp Bot, 2021, 72(8): 2918-2932. |
[10] | 胡壮壮, 王路路, 姜雪冰, 等. 我国大豆产业发展现状分析及对策[J]. 大豆科技, 2023(4): 1-11. |
Hu ZZ, Wang LL, Jiang XB, et al. Analysis and countermeasure of soybean industry development status in China[J]. Soybean Sci Technol, 2023(4): 1-11. | |
[11] | 曾学明. 我国大豆产业发展战略规划研究[J]. 中国农业资源与区划, 2017, 38(9): 89-97. |
Zeng XM. The strategic planning of soybean industry development in China[J]. Chin J Agric Resour Reg Plan, 2017, 38(9): 89-97. | |
[12] | 于文波, 李孝忠. 扩种背景下大豆供需矛盾分析及对策建议[J]. 大豆科技, 2023(6): 1-8. |
Yu WB, Li XZ. The contradiction analysis between soybean supply and demand and countermeasures under the background of planting expansion[J]. Soybean Sci Technol, 2023(6): 1-8. | |
[13] | 原向阳, 郭平毅, 张丽光, 等. 不同时期喷施草甘膦对大豆生理指标的影响[J]. 中山大学学报: 自然科学版, 2009, 48(2): 90-94. |
Yuan XY, Guo PY, Zhang LG, et al. Impact of spraying glyphosate on physiologi physioligical index of soybean at different growth stages[J]. Acta Sci Nat Univ Sunyatseni, 2009, 48(2): 90-94. | |
[14] | Jun SH, Yang JS, Jeon H, et al. Stabilized and immobilized carbonic anhydrase on electrospun nanofibers for enzymatic CO2 conversion and utilization in expedited microalgal growth[J]. Environ Sci Technol, 2020, 54(2): 1223-1231. |
[15] | Nayak M, Karemore A, Sen R. Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application[J]. Algal Res, 2016, 16: 216-223. |
[16] | Chen GY, Zhao L, Qi Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review[J]. Appl Energy, 2015, 137: 282-291. |
[17] | Rawat I, Kumar RR, Mutanda T, et al. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production[J]. Appl Energy, 2013, 103: 444-467. |
[18] | Salam S, Verma TN. Appending empirical modelling to numerical solution for behaviour characterisation of microalgae biodiesel[J]. Energy Convers Manag, 2019, 180: 496-510. |
[19] | Wang HY, Wu B, Jiang N, et al. The effects of influent chemical oxygen demand and strigolactone analog concentration on integral biogas upgrading and pollutants removal from piggery wastewater by different microalgae-based technologies[J]. Bioresour Technol, 2023, 370: 128483. |
[20] | 申婷, 邢冠润, 杜学振, 等. 不同微藻处理猪场废水的净化效果研究[J]. 畜牧与兽医, 2022, 54(2): 52-56. |
Shen T, Xing GR, Du XZ, et al. Purification effect of different microalgae on treatment of piggery wastewater[J]. Animal Husb Vet Med, 2022, 54(2): 52-56. | |
[21] | Guo JH, Selby K, Boxall ABA. Effects of antibiotics on the growth and physiology of chlorophytes, cyanobacteria, and a diatom[J]. Arch Environ Contam Toxicol, 2016, 71(4): 589-602. |
[22] | Deng ZK, Zhu JY, Yang L, et al. Microalgae fuel cells enhanced biodegradation of imidacloprid by Chlorella sp.[J]. Biochem Eng J, 2022, 179: 108327. |
[23] | 张晶. 混合营养模式下利用斜生栅藻同步去除养分和重金属[D]. 太原: 太原理工大学, 2022. |
Zhang J. Synchronous removal of nutrients and heavy metals by Scenedesmus obliquus under mixotrophic mode[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
[24] | 程方贝贝, 甘婷婷, 赵南京, 等. 4种淡水微藻对水体重金属铅吸附特性研究[J]. 环境科技, 2021, 34(6): 1-6. |
Cheng F, Gan TT, Zhao NJ, et al. Adsorption characteristics of four freshwater microalgae to heavy metal lead in water[J]. Environ Sci Technol, 2021, 34(6): 1-6. | |
[25] | Goh PS, Lau WJ, Ismail AF, et al. Microalgae-enabled wastewater treatment: A sustainable strategy for bioremediation of pesticides[J]. Water, 2022, 15(1): 70. |
[26] | Hussein MH, Abdullah AM, Badr EI Din NI, et al. Biosorption potential of the microchlorophyte Chlorella vulgaris for some pesticides[J]. J Fertil Pestic, 2017, 8(1): 1000177. |
[27] | Rambaldo L, Ávila H, Escolà Casas M, et al. Assessment of a novel microalgae-cork based technology for removing antibiotics, pesticides and nitrates from groundwater[J]. Chemosphere, 2022, 301: 134777. |
[28] | Ni Y, Lai JH, Wan JB, et al. Photosynthetic responses and accumulation of mesotrione in two freshwater algae[J]. Environ Sci Process Impacts, 2014, 16(10): 2288-2294. |
[29] | 张效铭, 刘颖颖, 崔红利, 等. 化学吸收剂单乙醇胺强化小球藻生长代谢及固碳效应的研究[J]. 激光生物学报, 2022, 31(4): 311-320. |
Zhang XM, Liu YY, Cui HL, et al. A study on the enhancement of growth, metabolism and carbon sequestration in Chlorella sp. by chemical absorbent monoethanolamine[J]. Acta Laser Biol Sin, 2022, 31(4): 311-320. | |
[30] | 苏胜. 微藻对草甘膦的响应及提高小麦抗草甘膦残留的效应分析[D]. 太谷: 山西农业大学, 2022. |
Su S. Response of microalgae to glyphosate and effect analysis of improving resistance of wheat to glyphosate residue[D]. Taigu: Shanxi Agricultural University, 2022. | |
[31] | 张其德. 测定叶绿素的几种方法[J]. 植物学通报, 1985, 20(5): 60-64. |
Zhang QD. Several methods for determination of chlorophyll[J]. Chin Bull Bot, 1985, 20(5): 60-64. | |
[32] | 刘颖颖, 朱梅, 崔红利, 等. 不同培养模式及生物膜含水量对栅藻生长和油脂积累的影响[J]. 植物生理学报, 2022, 58(3): 543-553. |
Liu YY, Zhu M, Cui HL, et al. Effects of cultivation mode and biofilm moisture content on the growth and lipid accumulation of Scenedesmus dimorphus[J]. Plant Physiol J, 2022, 58(3): 543-553. | |
[33] | 中华人民共和国生态环境部. 水质草甘膦的测定高效液相色谱法: HJ 1071-2019[S]. 北京: 中国环境出版集团, 2020. |
Ministry of Ecology and Environment of the People's Republic of China. Water quality-determination of glyphosate -high performance liquid chromatography: HJ 1071-2019[J]. Beijing: China Environment Publishing Group, 2020. | |
[34] | 成婧, 王美玲, 龚强, 等. 液相色谱-串联质谱法检测植物源食品中草甘膦及其代谢物的残留量[J]. 食品安全质量检测学报, 2016, 7(1): 138-144. |
Cheng J, Wang ML, Gong Q, et al. Determination of glyphosate and aminomethylphosphonic acid residues in plant-derived foodstuff by high performance liquid chromatography-tandem mass spectrometry[J]. J Food Saf Qual, 2016, 7(1): 138-144. | |
[35] | 乔成奎, 王超, 黄玉南, 等. 桃果实叶片和土壤草甘膦和氨甲基膦酸残留的HPLC-MS/MS检测方法[J]. 园艺学报, 2017, 44(3): 566-574. |
Qiao CK, Wang C, Huang YN, et al. Determination of glyphosate and aminomethylphosphonic acid residues in peach fruit, leaf and soil by high performance liquid chromatography-tandem mass spectrometry[J]. Acta Hortic Sin, 2017, 44(3): 566-574. | |
[36] | Nanda M, Kumar V, Fatima N, et al. Detoxification mechanism of organophosphorus pesticide via carboxylestrase pathway that triggers de novo TAG biosynthesis in oleaginous microalgae[J]. Aquat Toxicol, 2019, 209: 49-55. |
[37] | Tansay S, Issakul K, Ngearnpat N, et al. Impact of environmentally relevant concentrations of glyphosate and 2, 4-D commercial formulations on Nostoc sp. N1 and Oryza sativa L. Rice Seedlings[J]. Front Sustain Food Syst, 2021, 5: 661634. |
[38] | 张子莲, 陈秋兰, 陈博, 等. 农药对海洋微藻中肋骨条藻的毒性效应及其生物降解[J]. 中国科学: 地球科学, 2023, 53(3): 644-655. |
Zhang ZL, Chen QL, Chen B, et al. Toxic effects of pesticides on the marine microalga Skeletonema costatum and their biological degradation[J]. Sci China Earth Sci, 2023, 53(3): 644-655. | |
[39] | 卢玮. 山仔水库两种水华蓝藻对不同形态磷吸收及响应机制研究[D]. 福州: 福建师范大学, 2015. |
Lu W. Absorption and mechanism response of two waterbloom-forming cyanobacteria at different forms of phosphorus in the Shanzai reservior[D]. Fuzhou: Fujian Normal University, 2015. | |
[40] | Wang X, He GH, Wang ZY, et al. Purple acid phosphatase promoted hydrolysis of organophosphate pesticides in microalgae[J]. Environ Sci Ecotechnol, 2023, 18: 100318. |
[41] | Wong SL, Nakamoto L, Wainwright JF. Identification of toxic metals in affected algal cells in assays of wastewaters[J]. J Appl Phycol, 1994, 6(4): 405-414. |
[42] | Fernández C, Asselborn V, Parodi ER. Toxic effects of chlorpyrifos, cypermethrin and glyphosate on the non-target organism Selenastrum capricornutum(Chlorophyta)[J]. An Acad Bras Cienc, 2021, 93(4): e20200233. |
[43] | 王宇, 张锴, 王艳丽, 等. 冀东野生大豆对草甘膦的耐性鉴定及耐性机制初步研究[J]. 核农学报, 2022, 36(6): 1108-1114. |
Wang Y, Zhang K, Wang YL, et al. Identification of glyphosate-resistance and preliminary research on the resistant mechanism of wild soybean in eastern Hebei province[J]. J Nucl Agric Sci, 2022, 36(6): 1108-1114. | |
[44] | Schulz A, Münder T, Czytko HH, et al. Glyphosate transport and early effects on shikimate metabolism and its compartmentation in sink leaves of tomato and spinach plants[J]. Z Für Naturforschung C, 1990, 45(5): 529-534. |
[45] | King C, Purcell L, Vories E. Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate applications[J]. Agron J, 2001, 93(1): 179-186. |
[46] | 周垂帆, 李莹, 张晓勇, 等. 草甘膦毒性研究进展[J]. 生态环境学报, 2013, 22(10): 1737-1743. |
Zhou CF, Li Y, Zhang XY, et al. Research advance in ecotoxicity of glyphosate[J]. Ecol Environ Sci, 2013, 22(10): 1737-1743. | |
[47] | 杨国斌, 陈才志, 温欣宇, 等. 草甘膦、草铵膦喷施对槟榔根系形态及生理的影响[J]. 中国南方果树, 2024, 53(1): 74-82. |
Yang GB, Chen CZ, Wen XY, et al. Effects of glyphosate and glufosinate-ammonium application on root morphology and physiology of Areca catechu[J]. South China Fruits, 2024, 53(1): 74-82. | |
[48] | 徐雯. 藻-藻共培养净化牛场废水联产生物肥及其对小麦的促生效应[D]. 太谷: 山西农业大学, 2021. |
Xu W. Algae-algae co-culture to purify cattle-ranch wastewater coupled with bio-fertilizer and its growth-promoting effects on wheat[D]. Taigu: Shanxi Agricultural University, 2021. | |
[49] | S Sido MY, Tian YP, Wang XG, et al. Application of microalgae Chlamydomonas applanata M9V and Chlorella vulgaris S3 for wheat growth promotion and as urea alternatives[J]. Front Microbiol, 2022, 13: 1035791. |
[50] | Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances(EPS)and their applications[J]. Biotechnol Adv, 2016, 34(7): 1225-1244. |
[51] | 张华, 沈英, 俞涛. 微藻生物膜去污技术应用研究进展[J]. 可再生能源, 2022, 40(3): 299-306. |
Zhang H, Shen Y, Yu T. Applications and research progress in the wastewater treatment technology of microalgae biofilm[J]. Renew Energy Resour, 2022, 40(3): 299-306. | |
[52] | Sukačová K, Trtílek M, Rataj T. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment[J]. Water Res, 2015, 71: 55-63. |
[53] | Pereira A, Castro J, Ribeiro V, et al. Organomineral fertilizers pastilles from microalgae grown in wastewater: Ammonia volatilization and plant growth[J]. Sci Total Environ, 2021, 779: 146205. |
[1] | 赵平娟, 林晨俞, 王梦月, 张秀春, 李淑霞, 阮孟斌. 木薯SDH蛋白的序列分析及其与MeH1.2关系的研究[J]. 生物技术通报, 2024, 40(9): 74-81. |
[2] | 武帅, 辛燕妮, 买春海, 穆晓娅, 王敏, 岳爱琴, 赵晋忠, 吴慎杰, 杜维俊, 王利祥. 大豆GS基因家族全基因组鉴定及胁迫响应分析[J]. 生物技术通报, 2024, 40(8): 63-73. |
[3] | 杜仲阳, 杨泽, 梁梦静, 刘义珍, 崔红利, 史达明, 薛金爱, 孙岩, 张春辉, 季春丽, 李润植. 纳米硒(SeNPs)缓解烟草幼苗铅胁迫和促生效应[J]. 生物技术通报, 2024, 40(7): 183-196. |
[4] | 高萌萌, 赵天宇, 焦馨悦, 林春晶, 关哲允, 丁孝羊, 孙妍妍, 张春宝. 大豆细胞质雄性不育系及其恢复系的比较转录组分析[J]. 生物技术通报, 2024, 40(7): 137-149. |
[5] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
[6] | 白志元, 徐菲, 杨午, 王明贵, 杨玉花, 张海平, 张瑞军. 大豆细胞质雄性不育弱恢复型杂种F1育性转变的转录组分析[J]. 生物技术通报, 2024, 40(6): 134-142. |
[7] | 胡雅丹, 伍国强, 刘晨, 魏明. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报, 2024, 40(6): 5-22. |
[8] | 娄银, 高浩竣, 王茜, 牛景萍, 王敏, 杜维俊, 岳爱琴. 大豆GmHMGS基因的鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(4): 110-121. |
[9] | 李昊, 伍国强, 魏明, 韩悦欣. 甜菜BvBADH基因家族全基因组鉴定及其高盐胁迫下的表达分析[J]. 生物技术通报, 2024, 40(2): 233-244. |
[10] | 刘奕君, 闫伟, 何禹璇, 董立明, 龙丽坤, 李飞武. 转基因大豆多靶标质粒DNA标准分子的研制及应用[J]. 生物技术通报, 2024, 40(11): 169-183. |
[11] | 韩乐乐, 宋文迪, 边嘉珅, 李阳, 杨双胜, 陈紫怡, 李晓薇. 转录组与代谢组联合分析揭示大豆GmERD15c参与盐胁迫下类黄酮的生物合成[J]. 生物技术通报, 2024, 40(10): 243-252. |
[12] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[13] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[14] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[15] | 侯筱媛, 车郑郑, 李姮静, 杜崇玉, 胥倩, 王群青. 大豆膜系统cDNA文库的构建及大豆疫霉效应子PsAvr3a互作蛋白的筛选[J]. 生物技术通报, 2023, 39(4): 268-276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||