生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 256-263.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0432
郝楠(), 耿珊, 赵雨薇, 侯智涵, 赵斌(
), 刘颖超(
)
收稿日期:
2024-05-09
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
赵斌,男,博士,副教授,研究方向:靶标生物学;E-mail: bdzhaobin@126.com;作者简介:
郝楠,女,硕士,研究方向:靶标生物学;E-mail: h15832215606@163.com基金资助:
HAO Nan(), GENG Shan, ZHAO Yu-wei, HOU Zhi-han, ZHAO Bin(
), LIU Ying-chao(
)
Received:
2024-05-09
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】拟轮枝镰孢是玉米穗腐病的主要病原菌,探究拟轮枝镰孢FvALT的生物学功能,为新型靶向杀菌剂开发提供理论依据。【方法】利用ProtParam、ProtScale、WoLF PSORT和Clustal X等在线工具对FvALT的生理生化特征及同源性进行分析;采用SOMPA和SWISS-MODEL获得其蛋白结构,并利用AutoDock分析FvALT与底物的结合能力;进而通过原核表达和亲和镍柱层析方法获得目的蛋白,通过荧光滴定技术验证FvALT与底物的结合能力。【结果】FvALT为亲水性蛋白并定位于胞浆中,其蛋白二级结构以α-螺旋和无规则卷曲为主,并在镰孢菌中高度保守,具有典型的PTZ00377 superfamily结构域;FvALT的最佳诱导条件为0.4 mol/L IPTG,16℃诱导16 h;FvALT与α-酮戊二酸具有较强的结合作用,结合位点为ARG310、SER149、SER298、SER300和ASP258。【结论】拟轮枝镰孢FvALT具有典型的丙氨酸转氨酶特征,与底物α-酮戊二酸特异结合。
郝楠, 耿珊, 赵雨薇, 侯智涵, 赵斌, 刘颖超. 拟轮枝镰孢丙氨酸转氨酶FvALT的克隆与表达分析[J]. 生物技术通报, 2024, 40(12): 256-263.
HAO Nan, GENG Shan, ZHAO Yu-wei, HOU Zhi-han, ZHAO Bin, LIU Ying-chao. Cloning and Expression Analysis of FvALT from Fusarium verticillioides[J]. Biotechnology Bulletin, 2024, 40(12): 256-263.
图1 拟轮枝镰孢FvALT蛋白高级结构 A:二级结构;B:三级结构;C:三级结构评估
Fig. 1 Advanced structure of FvALT protein of F. verticillioides A: Secondary structure. B: Tertiary structure. C: Evaluation of tertiary structure
图2 ALT蛋白序列比对及系统进化分析 A:真菌、植物和动物中的ALT蛋白的同源分析;B:真菌中ALT蛋白的氨基酸比对
Fig. 2 Protein sequence alignment and phylogenetic analysis of ALT A: Homologous analysis of ALT proteins in fungi, plants, and animals. B: Amino acid alignment of ALT proteins in fungi
图3 FvALT在大肠杆菌BL21(DE3)中的表达 M:蛋白质分子量标准;1:未经IPTG诱导菌株;2:经IPTG诱导裂解菌株沉淀;3:经IPTG诱导裂解菌株上清液; 4:流穿液;5:100 mmol/L咪唑洗脱;6:150 mmol/L咪唑洗脱
Fig. 3 Expression of FvALT in E. coli BL21(DE3) M: Standard of protein molecular weight. 1: Strains without IPTG induction. 2: Precipitation of lysed strain with IPTG induction. 3: Lyse the strain supernatant with IPTG induction. 4: Flow-through fluid. 5: 100 mmol/L imidazole elution. 6: 150 mmol/L imidazole elution
[1] | Xu YF, Zhang ZR, Lu P, et al. Increasing Fusarium verticillioides resistance in maize by genomics-assisted breeding: methods, progress, and prospects[J]. Crop J, 2023, 11(6): 1626-1641. |
[2] | Czarnecka D, Czubacka A, Agacka-Mołdoch M, et al. The occurrence of fungal diseases in maize in organic farming versus an integrated management system[J]. Agronomy, 2022, 12(3): 558. |
[3] |
Bebber DP, Gurr SJ. Crop-destroying fungal and oomycete pathogens challenge food security[J]. Fungal Genet Biol, 2015, 74: 62-64.
doi: 10.1016/j.fgb.2014.10.012 pmid: 25459533 |
[4] |
Ma PP, Liu EP, Zhang ZR, et al. Genetic variation in ZmWAX2 confers maize resistance to Fusarium verticillioides[J]. Plant Biotechnol J, 2023, 21(9): 1812-1826.
doi: 10.1111/pbi.14093 pmid: 37293701 |
[5] | Aguado A, Savoie JM, Chéreau S, et al. Priming to protect maize from Fusarium verticillioides and its fumonisin accumulation[J]. J Sci Food Agric, 2019, 99(1): 64-72. |
[6] | Josselin L, Proctor RH, Lippolis V, et al. Does alteration of fumonisin production in Fusarium verticillioides lead to volatolome variation?[J]. Food Chem, 2024, 438: 138004. |
[7] | Masiello M, Somma S, Ghionna V, et al. In vitro and in field response of different fungicides against Aspergillus flavus and Fusarium species causing ear rot disease of maize[J]. Toxins, 2019, 11(1): 11. |
[8] | 刘西莉, 苗建强, 张灿. 植物病原菌抗药性及其抗性治理策略[J]. 农药学学报, 2022, 24(5): 921-936. |
Liu XL, Miao JQ, Zhang C. Fungicide resistance and the management strategies[J]. Chin J Pestic Sci, 2022, 24(5): 921-936. | |
[9] | Umemura I, Yanagiya K, Komatsubara S, et al. Purification and some properties of alanine aminotransferase from Candida maltosa[J]. Biosci Biotechnol Biochem, 1994, 58(2): 283-287. |
[10] |
García-Campusano F, Anaya VH, Robledo-Arratia L, et al. ALT1-encoded alanine aminotransferase plays a central role in the metabolism of alanine in Saccharomyces cerevisiae[J]. Can J Microbiol, 2009, 55(4): 368-374.
doi: 10.1139/w08-150 pmid: 19396236 |
[11] | Liu L, Zhong S, Yang RZ, et al. Expression, purification, and initial characterization of human alanine aminotransferase(ALT)isoenzyme 1 and 2 in High-five insect cells[J]. Protein Expr Purif, 2008, 60(2): 225-231. |
[12] | Peñalosa-Ruiz G, Aranda C, Ongay-Larios L, et al. Paralogous ALT1 and ALT2 retention and diversification have generated catalytically active and inactive aminotransferases in Saccharomyces cerevisiae[J]. PLoS One, 2012, 7(9): e45702. |
[13] | Yu SL, An YJ, Yang HJ, et al. Alanine-metabolizing enzyme Alt1 is critical in determining yeast life span, as revealed by combined metabolomic and genetic studies[J]. J Proteome Res, 2013, 12(4): 1619-1627. |
[14] |
Jiang L, Li ZN, Yu XM, et al. Bioinformatics analysis of Aux/IAA gene family in maize[J]. Agron J, 2021, 113(2): 932-942.
doi: 10.1002/agj2.20594 |
[15] | Li W, Xu HY, Liu Y, et al. Bioinformatics analysis of MAPKKK family genes in Medicago truncatula[J]. Genes, 2016, 7(4): 13. |
[16] |
Igarashi D, Miwa T, Seki M, et al. Identification of photorespiratory glutamate: glyoxylate aminotransferase(GGAT)gene in Arabidopsis[J]. Plant J, 2003, 33(6): 975-987.
pmid: 12631323 |
[17] | Vonbank A, Saely C, Rein P, et al. The alanine aminotransferase/aspartate aminotransferase ratio predicts future cardiovascular events in patients with established coronary artery disease and homa insulin resistance[J]. Atherosclerosis, 2016, 252: e64-e65. |
[18] |
Åberg F, Danford CJ, Thiele M, et al. A dynamic aspartate-to-alanine aminotransferase ratio provides valid predictions of incident severe liver disease[J]. Hepatol Commun, 2021, 5(6): 1021-1035.
doi: 10.1002/hep4.1700 pmid: 34141987 |
[19] |
施晓琦, 罗南都, 黄娇娇, 等. 天冬氨酸氨基转移酶/丙氨酸氨基转移酶与儿童噬血细胞性淋巴组织细胞增生症预后的相关性研究[J]. 中国全科医学, 2023, 26(30): 3801-3808.
doi: 10.12114/j.issn.1007-9572.2022.0879 |
Shi XQ, Luo ND, Huang JJ, et al. Correlation between aspartate aminotransferase/alanine aminotransferase and prognosis of hemophagocytic lymphohistiocytosis in children[J]. Chin Gen Pract, 2023, 26(30): 3801-3808. | |
[20] | Sansa AN, Venegas MDP, Valero C, et al. The aspartate aminotransaminase/alanine aminotransaminase(De Ritis)ratio predicts sensitivity to radiotherapy in head and neck carcinoma patients[J]. Head Neck, 2021, 43(7): 2091-2100. |
[21] | Qin C, Wei YX, Lyu XY, et al. High aspartate aminotransferase to alanine aminotransferase ratio on admission as risk factor for poor prognosis in COVID-19 patients[J]. Sci Rep, 2020, 10(1): 16496. |
[22] | Márquez D, Escalera-Fanjul X, El Hafidi M, et al. Alanine represses γ-aminobutyric acid utilization and induces alanine transaminase required for mitochondrial function in Saccharomyces cerevisiae[J]. Front Microbiol, 2021, 12: 695382. |
[23] |
Liepman AH, Olsen LJ. Alanine aminotransferase homologs catalyze the glutamate: glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis[J]. Plant Physiol, 2003, 131(1): 215-227.
doi: 10.1104/pp.011460 pmid: 12529529 |
[24] | de Sousa CAF, Sodek L. Alanine metabolism and alanine aminotransferase activity in soybean(Glycine max)during hypoxia of the root system and subsequent return to normoxia[J]. Environ Exp Bot, 2003, 50(1): 1-8. |
[25] |
Miyashita Y, Dolferus R, Ismond KP, et al. Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana[J]. Plant J, 2007, 49(6): 1108-1121.
doi: 10.1111/j.1365-313X.2006.03023.x pmid: 17319845 |
[26] | Ricoult C, Cliquet JB, Limami AM. Stimulation of alanine amino transferase(AlaAT)gene expression and alanine accumulation in embryo axis of the model legume Medicago truncatula contribute to anoxia stress tolerance[J]. Physiol Plant, 2005, 123(1): 30-39. |
[27] |
Sato K, Yamane M, Yamaji N, et al. Alanine aminotransferase controls seed dormancy in barley[J]. Nat Commun, 2016, 7: 11625.
doi: 10.1038/ncomms11625 pmid: 27188711 |
[28] | Rausch C, Lerchner A, Schiefner A, et al. Crystal structure of the ω-aminotransferase from Paracoccus denitrificans and its phylogenetic relationship with other class III aminotransferases that have biotechnological potential[J]. Proteins, 2013, 81(5): 774-787. |
[29] | Peña-Soler E, Fernandez FJ, López-Estepa M, et al. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli[J]. PLoS One, 2014, 9(7): e102139. |
[1] | 王子傲, 田瑞, 崔永梅, 白羿雄, 姚晓华, 安立昆, 吴昆仑. 青稞HvnJAZ4的生物信息学和表达模式分析[J]. 生物技术通报, 2025, 41(1): 173-185. |
[2] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[3] | 侯智涵, 郝楠, 李佳琪, 赵斌, 刘颖超. RNA m1A和m5C甲基化修饰在拟轮枝镰孢伏马毒素生物合成中的作用[J]. 生物技术通报, 2024, 40(9): 282-290. |
[4] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
[5] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
[6] | 武帅, 辛燕妮, 买春海, 穆晓娅, 王敏, 岳爱琴, 赵晋忠, 吴慎杰, 杜维俊, 王利祥. 大豆GS基因家族全基因组鉴定及胁迫响应分析[J]. 生物技术通报, 2024, 40(8): 63-73. |
[7] | 孙慧琼, 张春来, 王锡亮, 徐宏申, 窦苗苗, 杨博慧, 柴文婷, 赵珊珊, 姜晓东. 藜麦FLS基因家族的鉴定、表达及DNA变异分析[J]. 生物技术通报, 2024, 40(7): 172-182. |
[8] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
[9] | 李嘉欣, 李鸿燕, 刘丽娥, 张恬, 周武. 沙棘NRAMP基因家族鉴定及铅胁迫下表达分析[J]. 生物技术通报, 2024, 40(5): 191-202. |
[10] | 潘萍萍, 徐志浩, 张怡雯, 李青, 王忠华. 多花黄精查尔酮合酶PcCHS的原核表达、亚细胞定位及表达分析[J]. 生物技术通报, 2024, 40(5): 280-289. |
[11] | 张娜, 刘梦楠, 屈展帆, 崔祎平, 倪嘉瑶, 王华忠. 小麦烯醇化酶基因ENO2的可变翻译分析和原核表达[J]. 生物技术通报, 2024, 40(5): 112-119. |
[12] | 钟匀, 林春, 刘正杰, 董陈文华, 毛自朝, 李兴玉. 芦笋皂苷合成相关糖基转移酶基因克隆及原核表达分析[J]. 生物技术通报, 2024, 40(4): 255-263. |
[13] | 杨冲, 程莎莎, 艾长丰, 赵璇, 刘孟军. 枣ABF/AREB基因家族鉴定及其在果实发育中的表达分析[J]. 生物技术通报, 2024, 40(11): 184-191. |
[14] | 史京辉, 陈文慧, 陆坤, 郑婷婷, 任志远, 鲍国庆, 王敏, 骆健美. 定点饱和突变提高赭曲霉11α羟化酶的催化性能[J]. 生物技术通报, 2024, 40(1): 322-331. |
[15] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 68
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||