生物技术通报 ›› 2025, Vol. 41 ›› Issue (1): 298-311.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0445
周迪(), 王东旭, 格桑曲珍, 欧美香, 郭小芳, 德吉(
)
收稿日期:
2024-05-14
出版日期:
2025-01-26
发布日期:
2025-01-22
通讯作者:
德吉,女,高级实验师,研究方向:微生物生态学;E-mail: dg971103@163.com作者简介:
周迪,女,硕士研究生,研究方向:微生物学; E-mail: 1025231572@qq.com
基金资助:
ZHOU Di(), WANG Dong-xu, GE Sangquzhen, OU Mei-xiang, GUO Xiao-fang, DE Ji(
)
Received:
2024-05-14
Published:
2025-01-26
Online:
2025-01-22
摘要:
【目的】明确巴松措水体真菌的物种多样性和群落结构,以期为保护该地区的生物多样性和高原湖泊生态系统研究提供科学依据。【方法】通过采集巴松措24个水样,利用ITS Illumina高通量测序技术,研究巴松措水体中真菌群落组成、功能预测和环境因子与真菌群落的相关性。【结果】共获得5 930个OTU,隶属于 17个门,59个纲,137个目,327个科,591个属,815个种,表现出巴松措水体真菌丰富的多样性;巴松措水体真菌的优势菌门是子囊菌门(Ascomycota)、壶菌门(Chytridiomycota),未识别菌门Fungi_phy_Incertae_sedis 和担子菌门(Basidiomycota);优势真菌目是Pezizales、Rhizophydiales、Fungi_ord_Incertae_sedis、Zygophlyctidales、Atheliales、Helotiales、Tremellales、Hypocreales;FUNGuild数据库分析发现,巴松措水体真菌的营养方式多样,共包含3类营养型和5类复合营养型功能菌群,其中共生营养型(Symbiotroph,10.68%-57.56%)占比最大,并含有大量未知功能菌群;Spearman相关性分析显示,Simpson指数与Temp存在显著负相关关系(r=-0.50,P<0.05),与Shannon指数存在极显著正相关关系(r=0.85,P<0.001),RDA分析表明:Temp、pH和DO是影响巴松措水体真菌群落组成的重要环境因子。【结论】巴松措水体真菌资源丰度多样性较高,真菌的营养方式以共生营养型为主,存在大量未知功能类群,是一个有待开发的生物资源库。
周迪, 王东旭, 格桑曲珍, 欧美香, 郭小芳, 德吉. 西藏巴松措真菌多样性、群落结构和生态功能预测[J]. 生物技术通报, 2025, 41(1): 298-311.
ZHOU Di, WANG Dong-xu, GE Sangquzhen, OU Mei-xiang, GUO Xiao-fang, DE Ji. Fungal Diversity, Community Structure and Prediction of Ecological Function in Basomtso Lake, Xizang[J]. Biotechnology Bulletin, 2025, 41(1): 298-311.
Group | Observed_species | Shannon | Simpson | Chao1 | ACE | Goods_coverage | PD_whole_tree |
---|---|---|---|---|---|---|---|
1 | 532.88b | 4.62ab | 0.85 a | 581.52b | 600.20b | 1.00a | 449.73ab |
2 | 650.25a | 4.83ab | 0.84 a | 710.14ab | 729.01a | 1.00a | 612.97a |
3 | 627.75a | 4.90ab | 0.89 a | 689.21ab | 712.81ab | 1.00a | 498.48ab |
4 | 544.67b | 4.79ab | 0.92 a | 609.63ab | 647.28b | 1.00a | 374.15b |
5 | 770.33a | 5.65a | 0.93 a | 830.03a | 856.01a | 1.00a | 598.16a |
6 | 583.00b | 4.26b | 0.82 a | 650.78ab | 675.16ab | 1.00a | 443.63ab |
表1 巴松措水体不同水域Alpha多样性指数
Table 1 Alpha diversity index of different groups in Basomtso Lake
Group | Observed_species | Shannon | Simpson | Chao1 | ACE | Goods_coverage | PD_whole_tree |
---|---|---|---|---|---|---|---|
1 | 532.88b | 4.62ab | 0.85 a | 581.52b | 600.20b | 1.00a | 449.73ab |
2 | 650.25a | 4.83ab | 0.84 a | 710.14ab | 729.01a | 1.00a | 612.97a |
3 | 627.75a | 4.90ab | 0.89 a | 689.21ab | 712.81ab | 1.00a | 498.48ab |
4 | 544.67b | 4.79ab | 0.92 a | 609.63ab | 647.28b | 1.00a | 374.15b |
5 | 770.33a | 5.65a | 0.93 a | 830.03a | 856.01a | 1.00a | 598.16a |
6 | 583.00b | 4.26b | 0.82 a | 650.78ab | 675.16ab | 1.00a | 443.63ab |
图6 巴松措水体不同水域门水平真菌群落分布(A)以及目水平真菌群落分布(B)
Fig. 6 Distribution of phylum of fungal communities(A)and order of fungal communities in different waters of the Basomtso Lake
图7 巴松措水体真菌与环境因子相关性热图(A)和RDA分析图(B)以及真菌门(C)、目(D)水平top10与环境因子的相关性分析
Fig. 7 Correlation between fungi and environmental factors of heatmap (A), RDA analysis plots (B), and correlation analysis between fungal phylum (C) and top10 at order (D) level and environmental factors in the Basomtso Lake
图8 巴松措水体真菌营养型组成(A)和FunGuild详细分类(B)以及巴松措水体真菌功能注释聚类热图(C)
Fig. 8 Trophic composition of fungi(A), detailed classification of fungi FunGuild(B), and functionally annotated clustered heatmap of fungi in the water bodies of the Basomtso Lake
[1] | 胡海洋, 彭亮, 程艳, 等. 伊犁河游流域可培养水生真菌多样性及胞外酶活性[J]. 西南农业学报, 2023, 36(4): 826-837. |
Hu HY, Peng L, Cheng Y, et al. Diversity of culturable fungi and screening of extracellular enzyme activities in water environment of the Ili River basin[J]. Southwest China J Agric Sci, 2023, 36(4): 826-837. | |
[2] |
Tian JQ, Zhu D, Wang JZ, et al. Environmental factors driving fungal distribution in freshwater lake sediments across the Headwater Region of the Yellow River, China[J]. Sci Rep, 2018, 8(1): 3768.
doi: 10.1038/s41598-018-21995-6 pmid: 29491438 |
[3] | 王荣, 张科, 刘建宝, 等. 湖泊流域生态系统演化对人类世研究的重要意义[J]. 湖泊科学, 2024, 36(2): 333-338. |
Wang R, Zhang K, Liu JB, et al. The importance of lake ecosystem evolution for anthropocene research[J]. J Lake Sci, 2024, 36(2): 333-338. | |
[4] | 薛曌, 王兰, 耿啸岩, 等. 湖泊生态系统中的真菌及其作用研究进展[J]. 南方农业, 2023, 17(19): 70-75. |
Xue Z, Wang L, Geng XY, et al. Research progress on fungi and their functions in lake ecosystems[J]. South China Agric, 2023, 17(19): 70-75. | |
[5] |
王路生, 宗世坤, 朱美林. 淡水真菌次生代谢物的化学和生物活性多样性[J]. 中国生物化学与分子生物学报, 2023, 39(3): 385-399.
doi: 10.13865/j.cnki.cjbmb.2022.05.1179 |
Wang LS, Zong SK, Zhu ML. Chemical and biological diversity of secondary metabolites from freshwater fungi[J]. Chin J Biochem Mol Biol, 2023, 39(3): 385-399. | |
[6] | 李正媛, 陈琼, 唐振洲, 等. 北部湾广西海域海洋真菌多样性及其生物活性研究[J]. 广西科学, 2023, 30(4): 706-712. |
Li ZY, Chen Q, Tang ZZ, et al. Study on the biodiversity and biological activity of marine fun-gi isolated from GuangxiBeibu Gulf[J]. Guangxi Sci, 2023, 30(4): 706-712. | |
[7] | 杨发蓉, 杨瑞华, 丁骅孙, 等. 滇池水体中水生真菌类群分布的研究[J]. 云南大学学报:自然科学版, 1985, 7(S1): 85-93. |
Yang FR, Yang RH, Ding YS, et al. The distribution of the aquatic fungi groupsin the water of yunnan dian-chi lake[J]. Journal of Yunnan University: Natural Science Edition, 1985, 7(S1): 85-93. | |
[8] | 叶林, 吴兵, 蒋丽娟, 等. 融合大数据分析的环境工程微生物学教学改革探索[J]. 高等工程教育研究, 2024(1): 54-57. |
Ye L, Wu B, Jiang LJ, et al. Reform exploration of integrating big data analysis into environmental engineering microbiology teaching[J]. Res High Educ Eng, 2024(1): 54-57. | |
[9] | 罗建桦, 陶晔, 邢鹏, 等. 湖泊微生物宏基因组学研究进展[J]. 湖泊科学, 2020, 32(1): 271-280. |
Luo JY, Tao Y, Xing P, et al. Advances of metagenomics research for lake microbiomes[J]. Lake science, 2020, 32(1): 271-280. | |
[10] | 刘洋, 安瑞志, 王陈, 等. 西藏巴松错夏季浮游植物优势种生态位及其种间联结性[J]. 水生态学杂志, 2024, 45(2): 111-120. |
Liu Y, An RZ, Wang C, et al. Niche and interspecific associations of dominant summer phytoplankton species in basomtso lake, Xizang, China[J]. Journal of Water Ecology, 2024, 45(2): 111-120. | |
[11] | 安瑞志, 潘成梅, 塔巴拉珍, 等. 西藏巴松错浮游植物功能群垂直分布特征及其与环境因子的关系[J]. 湖泊科学, 2021, 33(1): 86-101. |
An RZ, Pan CM, Taba LZ, et al. Vertical distribution characteristics of phytoplankton functional groups and their relation-ships with environmental factors in Lake Basomtso,Tibet,China[J]. Lake science, 2021, 33(1): 86-101. | |
[12] | 廖梦娜, 金伊丽, 李晨瑜, 等. 藏东南巴松错200年沉积过程及其对硅藻记录的影响[J]. 生态学报, 2020, 40(3): 1089-1100. |
Liao MN, Jin YL, Li CY, et al. Sedimentary process and its impact on diatom record in the Lake Basomtso(SE Tibetan Plateau)over the past 200 years[J]. Acta Ecol Sin, 2020, 40(3): 1089-1100. | |
[13] | 古玉梅, 申敏, 赵爽. 蜘蛛香内生真菌及其根际土壤真菌群落多样性[J]. 微生物学通报, 2024, 51(7): 2475-2485. |
Gu YM, Shen M, Zhao S. Fungal diversity in the plant and rhizosphere soil of Valeriana jatamansi Jones[J]. Microbiology Bulletin, 2024, 51(7): 2475-2485. | |
[14] | 郭奇颖, 丘雨, 黄胡铃, 等. 木薯内生真菌及其根际土壤真菌多样性分析[J]. 分子植物育种, 2024: 1-18. |
Guo QY, Qiu Y, Huang HL, et al. Diversity analysis of endophytic fungi and rhizosphere soil fungi in cassava[J]. Mol Plant Breed, 2024: 1-18. | |
[15] | 郝兆, 王艳红, 德吉, 等. 羊卓雍错不同湖区水体真菌群落结构及其多样性[J]. 生态学报, 2021, 41(20): 8285-8296. |
Hao Z, Wang YH, De J, et al. Community structure and diversity of the aquatic fungal in different areas of Yamzhog Yumco Lake[J]. Acta Ecol Sin, 2021, 41(20): 8285-8296. | |
[16] | 王龙, 宋维君, 刘霍. 柴达木盆地托素盐碱湖真菌多样性研究[J]. 安徽农业科学, 2018, 46(25): 60-63, 66. |
Wang L, Song WJ, Liu H. Diversity of fungi in tuosu saline lake, Qaidam Basin[J]. J Anhui Agric Sci, 2018, 46(25): 60-63, 66. | |
[17] | 胡婷. 长江中下游湖泊中细菌和真菌多样性的空间分布格局及其驱动因素初步探究[D]. 南京: 南京师范大学, 2021. |
Hu T. Preliminary investigation on the spatial distribution pattern of bacterial and fungal diversity in lakes in the middle and lower reaches of the Yangtze River and its driving factors[D]. Nanjing: Nanjing Normal University, 2021. | |
[18] | 班允赫, 李旭, 李新宇, 等. 利用高通量测序技术对水稻秸秆中、低温降解菌系的比较分析[J]. 微生物学杂志, 2020, 40(5): 7-17. |
Ban YH, Li X, Li XY, et al. Comparative analysis of rice straw-decomposing mesophilic and cryogenic microbial consortia using high-throughput sequencing technology[J]. J Microbiol, 2020, 40(5): 7-17. | |
[19] | 邹大为. 水丝蚓对不同水生植物残体腐解过程的影响[D]. 南京: 南京大学, 2018. |
Zou DW. Influence of water filament earthworms on the decay process of different aquatic plant residues[D]. Nanjing: Nanjing University, 2018. | |
[20] | 池曌男, 李为萍, 张家鹏, 等. 水分亏缺对膜下滴灌向日葵根际微环境的影响[J]. 灌溉排水学报, 2023, 42(12): 53-62. |
Chi ZN, Li WP, Zhang JP, et al. Effect of water deficiency on the rhizosphere microenvironment of sunflower under film drip irrigation[J]. J Irrig Drain, 2023, 42(12): 53-62. | |
[21] | 耿梦蝶. 长江中下游及北方湖泊微生物群落对环境变化的响应[D]. 无锡: 江南大学, 2022. |
Geng MD. Response of microbial communities to environmental changes in lakes in the middle and lower reaches of the Yangtze River and in northern China[D]. Wuxi: Jiangnan University, 2022. | |
[22] | 解琳琳. 西北荒漠花棒根系DSE真菌物种多样性和耐盐性研究[D]. 保定: 河北大学, 2017. |
Xie LL. Species diversity and salt tolerance of DSE fungi in the root system of flowering rods in the northwest desert[D]. Baoding: Hebei University, 2017. | |
[23] | 郭佳欢. 杉木人工林土壤肥力及微生物群落结构和功能研究[D]. 南京: 南京林业大学, 2022. |
Guo JH. Studies on soil fertility and microbial community structure and function in fir plantation forests[D]. Nanjing: Nanjing Forestry University, 2022. | |
[24] | 谢旭姣, 王海鹤, 孙媛媛, 等. 三岔河干流水质相关性及时空变化特征研究[J]. 贵州师范大学学报: 自然科学版, 2024, 42(3): 26-34, 90. |
Xie XJ, Wang HH, Sun YY, et al. Water quality correlation and spatial and temporal variation characteristics of the mainstem of the Three Forks River[J]. J Guizhou Norm Univ Nat Sci, 2024, 42(3): 26-34, 90. | |
[25] | Seto K, Van den Wyngaert S, Degawa Y, et al. Taxonomic revision of the genus Zygorhizidium: Zygorhizidiales and Zygophlyctidales ord. nov.(Chytridiomycetes, Chytridiomycota)[J]. Fungal Syst Evol, 2020, 5: 17-38. |
[26] |
满百膺, 向兴, 罗洋, 等. 黄山典型植被类型土壤真菌群落特征及其影响因素[J]. 菌物学报, 2021, 40(10): 2735-2751.
doi: 10.13346/j.mycosystema.210279 |
Man BY, Xiang X, Luo Y, et al. Characteristics and influencing factors of soil fungal community of typical vegetation types in Mount Huangshan, East China[J]. Mycosystema, 2021, 40(10): 2735-2751. | |
[27] |
郑艳艳, 郭小芳, 四郎玉珍, 等. 青藏高原纳木错夏季沿岸水体可培养细菌多样性及其与理化因子的相关性[J]. 冰川冻土, 2023, 45(1): 243-253.
doi: 10.7522/j.issn.1000-0240.2023.0018 |
Zheng YY, Guo XF, Si L, et al. Diversity of culturable bacteria and its correlation with physicochemical factors in summer coastal waters of Nam Co, Tibetan Plateau[J]. J Glaciol Geocryol, 2023, 45(1): 243-253. | |
[28] |
Shade A, Peter H, Allison SD, et al. Fundamentals of microbial community resistance and resilience[J]. Front Microbiol, 2012, 3: 417.
doi: 10.3389/fmicb.2012.00417 pmid: 23267351 |
[29] | 赵祎, 石瑶, 汤雯婷, 等. 灯盏花内生真菌多样性、群落结构及生态功能预测[J]. 微生物学通报, 2023, 50(11): 4812-4824. |
Zhao Y, Shi Y, Tang WT, et al. Diversity, community structure, and ecological roles of endophytic fungi in Erigeron breviscapus[J]. Microbiology Bulletin, 2023, 50(11): 4812-4824. | |
[30] | Wu KY, Liu YC, Liao XY, et al. Fungal diversity and its relationship with environmental factors in coastal sediments from Guangdong, China[J]. J Fungi, 2023, 9(1): 101. |
[31] | 郑保海, 王晓宇, 李英军, 等. 丹江口库区浮游真菌组成与功能及其影响因素[J]. 环境科学, 2021, 42(1): 234-241. |
Zheng BH, Wang XY, Li YJ, et al. Community structure, function, and influencing factors of planktonic fungi in the Danjiangkou Reservoir[J]. Environ Sci, 2021, 42(1): 234-241. | |
[32] | 陶宇杰, 乔丽娟, 郭敏, 等. 西藏扎布耶盐碱湖真核浮游生物的群落结构与多样性分析[J]. 微生物学通报, 2024, 51(6): 1970-1982. |
Tao YJ, Qiao LJ, Guo M, et al. Community structure and diversity of eukaryotic plankton in the Zabuye saline-alkali Lake, Xizang[J]. Microbiology Bulletin, 2024, 51(6): 1970-1982. |
[1] | 马想蓉, 马欣, 陈胤勋, 龙启福, 王嵘, 邢江娃. 柴达木盆地昆特依盐湖可培养嗜盐细菌多样性研究[J]. 生物技术通报, 2024, 40(7): 285-298. |
[2] | 於莉军, 王桥美, 彭文书, 严亮, 杨瑞娟. 景迈山古茶园与现代有机茶园根际土壤微生物群落研究[J]. 生物技术通报, 2024, 40(5): 237-247. |
[3] | 雷美玲, 饶文华, 胡进锋, 岳琪, 吴祖建, 范国成. 黄龙病发病芦柑根际土壤细菌群落组成与多样性特征[J]. 生物技术通报, 2024, 40(2): 266-276. |
[4] | 杜洁, 黄选怡, 张岩, 姜晴春, 余知和, 王允, 柳忠玉. 虎杖根系细菌群落组成及其与有效成分含量相关性研究[J]. 生物技术通报, 2024, 40(12): 208-217. |
[5] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[6] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[7] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
[8] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[9] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[10] | 陈宇捷, 郑华宝, 周昕彦. 改良高通量测序技术揭示除藻剂对藻类群落的影响[J]. 生物技术通报, 2022, 38(11): 70-79. |
[11] | 曹修凯, 王珊, 葛玲, 张卫博, 孙伟. 染色体外环形DNA研究进展及其在畜禽育种中的应用[J]. 生物技术通报, 2022, 38(1): 247-257. |
[12] | 毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94. |
[13] | 唐蝶, 周倩. 植物基因组组装技术研究进展[J]. 生物技术通报, 2021, 37(6): 1-12. |
[14] | 吕燕, 刘建利, 李靖宇, 候琳琳, 孙敏, 苟琪. 不同品种和产区宁夏枸杞根系AMF多样性[J]. 生物技术通报, 2021, 37(6): 36-48. |
[15] | 朱斌, 甘晨晨, 王洪程. 球花石斛(Dendrobium thyrsiflorum)叶绿体基因组特征及亲缘关系解析[J]. 生物技术通报, 2021, 37(5): 38-47. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 80
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||