生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 208-217.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0375
杜洁(), 黄选怡, 张岩, 姜晴春, 余知和, 王允, 柳忠玉(
)
收稿日期:
2024-04-18
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
柳忠玉,女,博士,副教授,研究方向:药用植物次生代谢与调控;E-mail: zyliu2004@126.com作者简介:
杜洁,女,硕士研究生,研究方向:微生物与植物互作;E-mail: 3499818087@qq.com
基金资助:
DU Jie(), HUANG Xuan-yi, ZHANG Yan, JIANG Qing-chun, YU Zhi-he, WANG Yun, LIU Zhong-yu(
)
Received:
2024-04-18
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】通过分析虎杖(Polygonum cuspidatum)根系细菌群落组成及其与主要有效成分含量之间的相关性,探讨虎杖根系细菌群落对其药材品质的影响。【方法】收集一、二、三年生虎杖非根际土、根际土和根样品,利用高通量测序对细菌群落组成进行分析,并测定白藜芦醇苷、白藜芦醇、大黄素和大黄素甲醚等有效成分的含量,利用皮尔逊相关性分析探究细菌群落与有效成分含量间的相关性。【结果】生长年限对虎杖有效成分含量的影响显著(P<0.05)。非根际土和根际土细菌群落的优势属为假单胞菌属、鞘氨醇单胞菌属,而根内生细菌优势属为假单胞菌属、Chloroplast、游动放线菌属。根际土中鞘氨醇单胞菌属丰度逐年降低,根内假单胞菌属丰度逐年降低,根内Chloroplast丰度逐年升高。不同生长年限土壤样本和根样本间细菌群落α多样性存在显著差异,非根际土和根际土显著高于根(P<0.05)。非根际土、根际土与根之间细菌群落结构差异极显著(P<0.001),一、二、三年生虎杖间细菌群落结构差异显著(P<0.05)。非根际土与根际土细菌群落结构受生长年限影响显著(P<0.05),而根内生菌结构受生长年限影响不显著(P>0.05)。白藜芦醇苷含量与根际中微枝形杆菌属、Gaiella丰度显著正相关,与根内假单胞菌属丰度呈显著正相关,与根内游动放线菌属、类诺卡氏菌属丰度呈显著负相关;白藜芦醇含量与根内游动放线菌属、类诺卡氏菌属丰度呈显著负相关;大黄素含量与根际中节细菌属丰度呈显著正相关,与根内分枝杆菌属丰度呈显著正相关,与根内假单胞菌属丰度呈显著负相关;大黄素甲醚含量与根际中节细菌属丰度呈显著正相关,与根内分枝杆菌属丰度呈显著正相关,与根内游动放线菌属丰度呈显著负相关。【结论】虎杖根系细菌群落组成与有效成分之间存在关联,为虎杖品质改良提供科学依据。
杜洁, 黄选怡, 张岩, 姜晴春, 余知和, 王允, 柳忠玉. 虎杖根系细菌群落组成及其与有效成分含量相关性研究[J]. 生物技术通报, 2024, 40(12): 208-217.
DU Jie, HUANG Xuan-yi, ZHANG Yan, JIANG Qing-chun, YU Zhi-he, WANG Yun, LIU Zhong-yu. Composition of Root-associated Bacteria of Polygonum cuspidatum and Their Relationship with the Bioactive Ingredients[J]. Biotechnology Bulletin, 2024, 40(12): 208-217.
图1 混合对照品溶液(A)和供试品溶液(B)有效成分含量测定HPLC图 1 :白藜芦醇苷;2:白藜芦醇;3:大黄素;4:大黄素甲醚
Fig. 1 HPLC for content determination of active ingredient in mixed reference substances solution(A)and test solution(B) 1 : Polydatin. 2: Resveratrol. 3: Emodin. 4: Physcion
生长年限 Cultivation year | 白藜芦醇苷 Polydatin/(mg·g-1) | 白藜芦醇 Resveratrol/(mg·g-1) | 大黄素 Emodin/(mg·g-1) | 大黄素甲醚 Physcion/(mg·g-1) |
---|---|---|---|---|
一年生(1 Y) | 21.623±1.174c | 1.753±0.081c | 1.886±0.051b | 3.785±0.207c |
二年生(2 Y) | 32.738±1.530b | 3.346±0.056b | 4.520±0.160a | 7.656±0.529a |
三年生(3 Y) | 48.147±1.416a | 3.907±0.050a | 2.110±0.038b | 5.167±0.308b |
F值 | 92.929*** | 305.202*** | 216.261*** | 49.952*** |
表1 虎杖根中白藜芦醇苷、白藜芦醇、大黄素和大黄素甲醚的含量
Table 1 Contents of polydatin, resveratrol, emodin and physcion in roots
生长年限 Cultivation year | 白藜芦醇苷 Polydatin/(mg·g-1) | 白藜芦醇 Resveratrol/(mg·g-1) | 大黄素 Emodin/(mg·g-1) | 大黄素甲醚 Physcion/(mg·g-1) |
---|---|---|---|---|
一年生(1 Y) | 21.623±1.174c | 1.753±0.081c | 1.886±0.051b | 3.785±0.207c |
二年生(2 Y) | 32.738±1.530b | 3.346±0.056b | 4.520±0.160a | 7.656±0.529a |
三年生(3 Y) | 48.147±1.416a | 3.907±0.050a | 2.110±0.038b | 5.167±0.308b |
F值 | 92.929*** | 305.202*** | 216.261*** | 49.952*** |
样本类型 Sample type | Shannon指数Shannon index | Observed species指数Observed species index |
---|---|---|
1年生非根际土 1-year old bulk soil(BS1) | 5.858 4±2.063 4bc | 1 496.93±418cd |
1年生根际土 1-year old rhizosphere(RS1) | 8.956 8±0.496 2ab | 1 753.53±226.34cd |
1年生根 1-year old root(R1) | 5.372±0.592 9c | 809.67±220.22d |
2年生非根际土 2-year old bulk soil(BS2) | 9.829 7±0.332 7a | 3 569.5±608.87a |
2年生根际土 2-year old rhizosphere(RS2) | 9.550 7±0.169 0a | 2 350.17±343.23bc |
2年生根 2-year old root(R2) | 4.183 7±1.979 5c | 983.9±554.14d |
3年生非根际土 3-year old bulk soil(BS3) | 8.812 3±0.832 6ab | 2 083.3±306.84cd |
3年生根际土 3-year old rhizosphere(RS3) | 10.256±0.140 0a | 335 4.6±428.67ab |
3年生根3-year old root(R3) | 3.104 6±0.677 0c | 834.2±67.89d |
F值 | 6.508*** | 7.054*** |
表2 非根际土、根际土和根内细菌群落的α多样性指数
Table 2 α diversity index of bacterial community of three compartments
样本类型 Sample type | Shannon指数Shannon index | Observed species指数Observed species index |
---|---|---|
1年生非根际土 1-year old bulk soil(BS1) | 5.858 4±2.063 4bc | 1 496.93±418cd |
1年生根际土 1-year old rhizosphere(RS1) | 8.956 8±0.496 2ab | 1 753.53±226.34cd |
1年生根 1-year old root(R1) | 5.372±0.592 9c | 809.67±220.22d |
2年生非根际土 2-year old bulk soil(BS2) | 9.829 7±0.332 7a | 3 569.5±608.87a |
2年生根际土 2-year old rhizosphere(RS2) | 9.550 7±0.169 0a | 2 350.17±343.23bc |
2年生根 2-year old root(R2) | 4.183 7±1.979 5c | 983.9±554.14d |
3年生非根际土 3-year old bulk soil(BS3) | 8.812 3±0.832 6ab | 2 083.3±306.84cd |
3年生根际土 3-year old rhizosphere(RS3) | 10.256±0.140 0a | 335 4.6±428.67ab |
3年生根3-year old root(R3) | 3.104 6±0.677 0c | 834.2±67.89d |
F值 | 6.508*** | 7.054*** |
图3 不同部位(A)和不同生长年限(B)细菌群落的PCoA分析 BS:非根际土;RS:根际土;R:根;1Y:一年生;2Y:二年生;3Y:三年生
Fig. 3 Principal coordinates analysis(PCoA)of bacterial community among different compartments(A)and different cultivation years(B) BS: Bulk soil. RS: Rhizosphere soil. R: Root. 1Y:1-year old. 2Y: 2-year old. 3Y: 3-year old
部位 Compartment | 分组 Group | ADONIS分析 ADONIS analysis | ANOSIM分析ANOSIM analysis | ||||
---|---|---|---|---|---|---|---|
R2 | P | R | P | ||||
非根际土 Bulk soil(BS) | 一年生vs. 二年生vs. 三年生 1-year old vs. 2-year old vs.3-year old | 0.474* | 0.021 | 0.621* | 0.015 | ||
根际土 Rhizosphere soil(RS) | 一年生vs. 二年生vs. 三年生 1-year old vs. 2-year old vs.3-year old | 0.571** | 0.005 | 0.687** | 0.005 | ||
根Root(R) | 一年生vs. 二年生vs. 三年生 1-year old vs. 2-year old vs.3-year old | 0.397 | 0.111 | 0.251 | 0.111 |
表3 同一部位不同生长年限的细菌群落组成差异分析
Table 3 Differential analysis of bacterial community composition during different cultivation years in the same compartments
部位 Compartment | 分组 Group | ADONIS分析 ADONIS analysis | ANOSIM分析ANOSIM analysis | ||||
---|---|---|---|---|---|---|---|
R2 | P | R | P | ||||
非根际土 Bulk soil(BS) | 一年生vs. 二年生vs. 三年生 1-year old vs. 2-year old vs.3-year old | 0.474* | 0.021 | 0.621* | 0.015 | ||
根际土 Rhizosphere soil(RS) | 一年生vs. 二年生vs. 三年生 1-year old vs. 2-year old vs.3-year old | 0.571** | 0.005 | 0.687** | 0.005 | ||
根Root(R) | 一年生vs. 二年生vs. 三年生 1-year old vs. 2-year old vs.3-year old | 0.397 | 0.111 | 0.251 | 0.111 |
ASV | 属Genus | 白藜芦醇苷Polydatin | 白藜芦醇Resveratrol | 大黄素Emodin | 大黄素甲醚Physcion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | P | R | P | R | P | R | P | ||||||
ASV_584 | 节细菌属Arthrobacter | -0.339 | 0.372 | -0.009 | 0.981 | 0.885** | 0.002 | 0.730* | 0.025 | ||||
ASV_30182 | 微枝形杆菌属Icrovirga | 0.824** | 0.006 | 0.640 | 0.063 | -0.485 | 0.186 | -0.229 | 0.554 | ||||
ASV_3565 | Gaiella | 0.734* | 0.024 | 0.438 | 0.238 | -0.646 | 0.060 | -0.396 | 0.291 |
表4 有效成分与根际土核心ASV的相关性分析
Table 4 Analysis of the correlation between bioactive ingredients and the core ASV in rhizosphere soil
ASV | 属Genus | 白藜芦醇苷Polydatin | 白藜芦醇Resveratrol | 大黄素Emodin | 大黄素甲醚Physcion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | P | R | P | R | P | R | P | ||||||
ASV_584 | 节细菌属Arthrobacter | -0.339 | 0.372 | -0.009 | 0.981 | 0.885** | 0.002 | 0.730* | 0.025 | ||||
ASV_30182 | 微枝形杆菌属Icrovirga | 0.824** | 0.006 | 0.640 | 0.063 | -0.485 | 0.186 | -0.229 | 0.554 | ||||
ASV_3565 | Gaiella | 0.734* | 0.024 | 0.438 | 0.238 | -0.646 | 0.060 | -0.396 | 0.291 |
ASV | 属Genus | 白藜芦醇苷Polydatin | 白藜芦醇Resveratrol | 大黄素Emodin | 大黄素甲醚Physcion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | P | R | P | R | P | R | P | ||||||
ASV_33662 | 游动放线菌属Actinoplanes | -0.736* | 0.024 | -0.923*** | 0.000 | -0.584 | 0.099 | -0.789* | 0.011 | ||||
ASV_13402 | 游动放线菌属Actinoplanes | -0.692* | 0.039 | -0.751* | 0.020 | -0.420 | 0.260 | -0.549 | 0.126 | ||||
ASV_28037 | 游动放线菌属Actinoplanes | -0.828** | 0.006 | -0.935*** | 0.000 | -0.300 | 0.433 | -0.551 | 0.125 | ||||
ASV_11851 | 分枝杆菌属 Mycobacterium | 0.134 | 0.730 | 0.414 | 0.268 | 0.785* | 0.012 | 0.754* | 0.019 | ||||
ASV_21022 | 分枝杆菌属 Mycobacterium | -0.149 | 0.702 | 0.121 | 0.756 | 0.788* | 0.012 | 0.655 | 0.055 | ||||
ASV_16286 | 类诺卡氏菌属Nocardioides | -0.794* | 0.011 | -0.842** | 0.004 | -0.341 | 0.370 | -0.524 | 0.148 | ||||
ASV_7783 | 类诺卡氏菌属Nocardioides | -0.737* | 0.023 | -0.790* | 0.011 | -0.333 | 0.381 | -0.526 | 0.146 | ||||
ASV_25065 | 假单胞菌属 Pseudomonas | 0.708* | 0.033 | 0.393 | 0.296 | -0.669* | 0.049 | -0.452 | 0.222 |
表5 有效成分与根内核心ASV的相关性分析
Table 5 Analysis of the correlation between bioactive ingredients and the core ASV in roots
ASV | 属Genus | 白藜芦醇苷Polydatin | 白藜芦醇Resveratrol | 大黄素Emodin | 大黄素甲醚Physcion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | P | R | P | R | P | R | P | ||||||
ASV_33662 | 游动放线菌属Actinoplanes | -0.736* | 0.024 | -0.923*** | 0.000 | -0.584 | 0.099 | -0.789* | 0.011 | ||||
ASV_13402 | 游动放线菌属Actinoplanes | -0.692* | 0.039 | -0.751* | 0.020 | -0.420 | 0.260 | -0.549 | 0.126 | ||||
ASV_28037 | 游动放线菌属Actinoplanes | -0.828** | 0.006 | -0.935*** | 0.000 | -0.300 | 0.433 | -0.551 | 0.125 | ||||
ASV_11851 | 分枝杆菌属 Mycobacterium | 0.134 | 0.730 | 0.414 | 0.268 | 0.785* | 0.012 | 0.754* | 0.019 | ||||
ASV_21022 | 分枝杆菌属 Mycobacterium | -0.149 | 0.702 | 0.121 | 0.756 | 0.788* | 0.012 | 0.655 | 0.055 | ||||
ASV_16286 | 类诺卡氏菌属Nocardioides | -0.794* | 0.011 | -0.842** | 0.004 | -0.341 | 0.370 | -0.524 | 0.148 | ||||
ASV_7783 | 类诺卡氏菌属Nocardioides | -0.737* | 0.023 | -0.790* | 0.011 | -0.333 | 0.381 | -0.526 | 0.146 | ||||
ASV_25065 | 假单胞菌属 Pseudomonas | 0.708* | 0.033 | 0.393 | 0.296 | -0.669* | 0.049 | -0.452 | 0.222 |
[1] | Ke J, Li MT, Xu SY, et al. Advances for pharmacological activities of Polygonum cuspidatum - A review[J]. Pharm Biol, 2023, 61(1): 177-188. |
[2] | Trivedi P, Leach JE, Tringe SG, et al. Plant-microbiome interactions: from community assembly to plant health[J]. Nat Rev Microbiol, 2020, 18(11): 607-621. |
[3] |
Korenblum E, Dong Y, Szymanski J, et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling[J]. Proc Natl Acad Sci USA, 2020, 117(7): 3874-3883.
doi: 10.1073/pnas.1912130117 pmid: 32015118 |
[4] |
Brunel C, Pouteau R, Dawson W, et al. Towards unraveling macroecological patterns in rhizosphere microbiomes[J]. Trends Plant Sci, 2020, 25(10): 1017-1029.
doi: S1360-1385(20)30148-5 pmid: 32467065 |
[5] | 包丽琼, 陈同, 靳保龙, 等. 丹参酮类化合物调控丹参根微生物组的研究[J]. 中国中药杂志, 2021, 46(11): 2806-2815. |
Bao LQ, Chen T, Jin BL, et al. Study on tanshinones regulating root-associated microbiomes of Salvia miltiorrhiza[J]. China J Chin Mater Med, 2021, 46(11): 2806-2815. | |
[6] |
Vives-Peris V, de Ollas C, Gómez-Cadenas A, et al. Root exudates: from plant to rhizosphere and beyond[J]. Plant Cell Rep, 2020, 39(1): 3-17.
doi: 10.1007/s00299-019-02447-5 pmid: 31346716 |
[7] | Ji WX, Leng X, Jin ZX, et al. Plant growth promoting bacteria increases biomass, effective constituent, and modifies rhizosphere bacterial communities of Panax ginseng[J]. Acta Agric Scand Sect B, 2019, 69(2): 135-146. |
[8] | Zhai TT, Wang YF, Liu CL, et al. Trichoderma asperellum ACCC30536 inoculation improves soil nutrition and leaf artemisinin production in Artemisia annua[J]. Acta Physiol Plant, 2019, 41(4): 46. |
[9] |
姜晴春, 杜洁, 王嘉诚, 等. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1231 |
Jiang QC, Du J, Wang JC, et al. Expression and function analysis of transcription factor PcMYB2 from Polygonum cuspidatum[J]. Biotechnol Bull, 2023, 39(5): 217-223. | |
[10] |
Zhang YH, Zheng LL, Zheng Y, et al. Assembly and annotation of a draft genome of the medicinal plant Polygonum cuspidatum[J]. Front Plant Sci, 2019, 10: 1274.
doi: 10.3389/fpls.2019.01274 pmid: 31681373 |
[11] | 彭浩. 秦巴山区虎杖中产白藜芦醇(苷)内生真菌的分离鉴定[D]. 武汉: 华中农业大学, 2010. |
Peng H. Isolation and identification of endophytic fungi producing resveratrol(glycosides)from Polygonum cuspidatum in qinba mountain area[D]. Wuhan: Huazhong Agricultural University, 2010. | |
[12] | Sun H, He Y, Xiao Q, et al. Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum[J]. Afr J Microbiol Res, 2013, 7(16): 1496-1504. |
[13] | 国家药典委员会. 中华人民共和国药典-三部: 2020年版[M]. 北京: 中国医药科技出版社, 2020. |
National Pharmacopoeia Commission. People's republic of China(PRC)pharmacopoeia-part III: 2020 edition[M]. Beijing: China Medical Science and Technology Press, 2020. | |
[14] | Xiong C, Zhu YG, Wang JT, et al. Host selection shapes crop microbiome assembly and network complexity[J]. New Phytol, 2021, 229(2): 1091-1104. |
[15] | Xiong C, He JZ, Singh BK, et al. Rare taxa maintain the stability of crop mycobiomes and ecosystem functions[J]. Environ Microbiol, 2021, 23(4): 1907-1924. |
[16] |
Chen PL, Zhao ML, Tang F, et al. The effect of plant compartments on the Broussonetia papyrifera-associated fungal and bacterial communities[J]. Appl Microbiol Biotechnol, 2020, 104(8): 3627-3641.
doi: 10.1007/s00253-020-10466-6 pmid: 32078018 |
[17] | Li YM, Liu Y, Zhang H, et al. The composition of root-associated bacteria and fungi of Astragalus mongholicus and their relationship with the bioactive ingredients[J]. Front Microbiol, 2021, 12: 642730. |
[18] | Li YY, Dang HL, Lv XH, et al. High-throughput sequencing reveals rhizosphere fungal community composition and diversity at different growth stages of Populus euphratica in the lower reaches of the Tarim River[J]. PeerJ, 2022, 10: e13552. |
[19] | 冼康华, 苏江, 付传明, 等. 不同生长年限华重楼根际土壤微生物多样性研究[J]. 广西植物, 2022, 42(12): 2087-2098. |
Xian KH, Su J, Fu CM, et al. Microbial diversity in rhizosphere soil of Paris polyphylla var. chinensis in different growth years[J]. Guihaia, 2022, 42(12): 2087-2098. | |
[20] | Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health[J]. Annu Rev Ecol Evol Syst, 2019, 50: 145-168. |
[21] |
Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome?[J]. Trends Plant Sci, 2018, 23(1): 25-41.
doi: S1360-1385(17)30199-1 pmid: 29050989 |
[22] |
Fitzpatrick CR, Salas-González I, Conway JM, et al. The plant microbiome: from ecology to reductionism and beyond[J]. Annu Rev Microbiol, 2020, 74: 81-100.
doi: 10.1146/annurev-micro-022620-014327 pmid: 32530732 |
[23] | Merlin E, Melato E, Lourenço ELB, et al. Inoculation of arbuscular mycorrhizal fungi and phosphorus addition increase coarse mint(Plectranthus amboinicus Lour.) plant growth and essential oil content[J]. Rhizosphere, 2020, 15: 100217. |
[24] | Khalediyan N, Weisany W, Schenk PM. Arbuscular mycorrhizae and rhizobacteria improve growth, nutritional status and essential oil production in Ocimum basilicum and Satureja hortensis[J]. Ind Crops Prod, 2021, 160: 113163. |
[25] | Pace L, Pellegrini M, Palmieri S, et al. Plant growth-promoting rhizobacteria for in vitro and ex vitro performance enhancement of Apennines'Genepì(Artemisia umbelliformis subsp. eriantha), an endangered phytotherapeutic plant[J]. Vitro Cell Dev Biol Plant, 2020, 56(1): 134-142. |
[26] | Zhang YH, Zheng LL, Zheng Y, et al. Insight into the assembly of root-associated microbiome in the medicinal plant Polygonum cuspidatum[J]. Ind Crops Prod, 2020, 145: 112163. |
[27] | Zhang QY, Cai YZ, Zhang LP, et al. The accumulation of active ingredients of Polygonatum cyrtonema Hua is associated with soil characteristics and bacterial community[J]. Front Microbiol, 2024, 15: 1347204. |
[1] | 周迪, 王东旭, 格桑曲珍, 欧美香, 郭小芳, 德吉. 西藏巴松措真菌多样性、群落结构和生态功能预测[J]. 生物技术通报, 2025, 41(1): 298-311. |
[2] | 马想蓉, 马欣, 陈胤勋, 龙启福, 王嵘, 邢江娃. 柴达木盆地昆特依盐湖可培养嗜盐细菌多样性研究[J]. 生物技术通报, 2024, 40(7): 285-298. |
[3] | 於莉军, 王桥美, 彭文书, 严亮, 杨瑞娟. 景迈山古茶园与现代有机茶园根际土壤微生物群落研究[J]. 生物技术通报, 2024, 40(5): 237-247. |
[4] | 雷美玲, 饶文华, 胡进锋, 岳琪, 吴祖建, 范国成. 黄龙病发病芦柑根际土壤细菌群落组成与多样性特征[J]. 生物技术通报, 2024, 40(2): 266-276. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[7] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[8] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
[9] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[10] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[11] | 符勇耀, 易德燕, 杨先茂, 蔡莉, 梁渝华, 雷美艳, 杨利平. 卷丹新种质JD-h-15的形态特征与遗传变异分析[J]. 生物技术通报, 2022, 38(11): 140-150. |
[12] | 陈宇捷, 郑华宝, 周昕彦. 改良高通量测序技术揭示除藻剂对藻类群落的影响[J]. 生物技术通报, 2022, 38(11): 70-79. |
[13] | 李婷婷, 邓旭辉, 李若尘, 刘红军, 沈宗专, 李荣, 沈其荣. 番茄青枯病发生对土壤真菌群落多样性的影响[J]. 生物技术通报, 2022, 38(10): 195-203. |
[14] | 曹修凯, 王珊, 葛玲, 张卫博, 孙伟. 染色体外环形DNA研究进展及其在畜禽育种中的应用[J]. 生物技术通报, 2022, 38(1): 247-257. |
[15] | 毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||